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Introduction
➢ Let 𝑓(𝑥) is be  nonlinear function of vector 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) defined over 

the domain 𝐷 ⊆ 𝑅𝑛. Consider an NLP problem

min
𝒙∈𝐷

𝑓(𝑥) (or m𝑎𝑥
𝒙∈𝐷

𝑓(𝑥))

➢ If 𝐷 = 𝑅𝑛, then we have an unconstrained non-linear problem (NLP)

min
𝒙∈𝐷

𝑓(𝑥) (or m𝑎𝑥
𝒙∈𝐷

𝑓(𝑥))

where no constraints are placed on the decision variables x. 
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Introduction – some definitions
➢ Global minimum: 

A point 𝒙∗ is a global minimiser or a global minimum point of a function 𝑓 𝒙 if

• The value 𝑓 𝒙∗ is a global minimum value of 𝑓 𝒙 .

• A strict global minimiser or a strict global minimum point is  defined as 
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x is global minimiser if

f x f x for x in Domain

x is strict global minimiser if

f x f x for any x in

Domain



Introduction – some definitions
➢ Local minimum:

A point 𝒙∗ is a local minimiser or a local  minimum point of a function 𝑓 𝒙 if

• The value 𝑓 𝒙∗ is a local minimum value of 𝑓 𝒙 .

• A strict local minimiser or a strict local minimum point is defined as 
































































is a local minimiser if

there exists 5 D
f x f x for any sees

strict local minimiser if
there exists SED

f x f x in XE S



Introduction
➢ It is possible for a function to have

➢ both global and local minimisers: ➢ neither global nor local minimisers:
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Introduction
➢ It is possible for a function to have

➢ a local minimiser and yet no global 

minimiser;
➢ multiple global minimisers

➢ unique global minimizer
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Introduction

➢ In this course we will consider only a specific type of NLP problems –

minimising a convex function (or maximising a concave function) 

over a convex set.
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Definitions:
Assume that f(x) has continuous second-order partial derivatives. For each 
point 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) denote:

➢ Gradient of   f(x) :
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Definitions:
Assume that f(x) has continuous second-order partial derivatives. For each 
point 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) denote:

➢ Hessian matrix:
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Definitions:
➢ 𝒊𝒕𝒉 principal minor(s) of 𝒏 × 𝒏 matrix is the determinant of any 𝑖 × 𝑖 matrix 

obtained by deleting (𝑛 − 𝑖) row(s) and the corresponding (𝑛 − 𝑖) column(s) 
of the matrix. 

Example: 𝐴 = −2 −1
−1 4 1st principal minor(s) :

2nd principal minor(s) :
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Definitions:

Example 1: 𝐴 =
1 2 3
4 5 6
1 0 0

1st principal minor(s) :

2nd principal minor(s) :

3rd principal minor(s) :
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amdet 3 3
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det 11 1 at ordet 4

det 3



Convex function 
➢ A function 𝑓(𝑥) is convex if for any two points (or vectors) 𝑥1 ∈ D and 𝑥2 ∈ D and for 

any 𝛼 ∈ [0,1]

𝑓(𝛼𝑥1 + (1 − 𝛼)𝑥2) ≤ 𝛼𝑓(𝑥1) + (1 − 𝛼)𝑓(𝑥2).

➢ Theorem 1. Assume that 𝑓(𝑥) has continuous second-order partial derivatives for 

each point 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛). Then 𝑓(𝑥) is convex function on D if and only if for 

each 𝑥∈ D all principal minors of its Hessian are nonnegative. 
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Convex function 
➢ Example 2:  𝑓 𝑥 = 𝑥12 + 2𝑥1𝑥2 + 𝑥22
































































is it convex

af s 2x 2 2 27

title 2 Tame

attx
1p m 2,2 0

2ⁿᵈp.m det 3 0

by Th 1 all p.m are 20
Hence f x is convex



Concave function 
➢ A function 𝑓(𝑥) is concave if for any two points (or vectors) 𝑥1 ∈ D and 𝑥2 ∈ D and for 

any 𝛼 ∈ [0,1]

f(𝛼𝑥1 + (1 − 𝛼)𝑥2) ≥ 𝛼𝑓(𝑥1) + (1 − 𝛼)𝑓(𝑥2).

➢ Theorem 2. Assume that that 𝑓(𝑥) has continuous second-order partial derivatives for 

each point 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛). Then 𝑓(𝑥) is concave function on D if and only if for 

each 𝑥∈ D  and 𝑘 = 1…𝑛 all nonzero 𝑘𝑡ℎ principal minors of its Hessian matrix 

have the same sign as (−1)𝑘. 
































































x ̅ 2X 1 2 12
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Concave function 
➢ Example 3: 𝑓 𝑥 = −3𝑥12 + 4𝑥1𝑥2 − 2𝑥22
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f a L 62 422 42 043127

riff

1ˢᵗ p.m 6 420
as 1

2 p.m det 1 850 as 1

Hence by Th 2 f x is concave



Convex set – some results
➢ A set 𝑆 is convex if for any two points (or vectors) 𝑥1 ∈ 𝑆 and 𝑥2 ∈ 𝑆 and for any 𝛼 ∈

[0,1] 𝛼𝑥1 + (1 − 𝛼)𝑥2 ∈ 𝑆.

➢ If 𝑔(𝑥) is a convex function, then the set 𝑆 = {𝑥 ∶ 𝑔(𝑥) ≤ 𝑐} for any constant 𝑐 is 

convex

➢ If 𝑔(𝑥) is a convex function, then the set

𝑆 = {𝑢 = (𝑥|𝑦) = (𝑥1, 𝑥2, … , 𝑥𝑛, y) : 𝑦 ≥ 𝑔(𝑥)}

is a convex set of 𝑅𝑛+1. If you “colour in” above the graph of a convex function, then you 

get a convex set.
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Convex set – some results
➢ Theorem 3.  If f(x) is a convex function and 𝑆 is a convex set, then any local minimum 

of the minimisation NLP

min
𝑥 ∈ 𝑆

𝑓 𝑥

is also a global minimum. If f(x) is a strictly convex function, then the global minimum will 

be unique.
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f x is strictly convex if for
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x ̅ 2x 1 2 2 αE 0,1
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More definitions

Let 𝐴 be 𝑛 × 𝑛 symmetric matrix. Then 𝐴 is 

➢ Positive-definite if 

➢ Negative- definite if 

➢ Indefinite if 

➢ Positive- semidefinite if

➢ Negative- semidefinite if
































































for any X 0

TAX SO STAX 20

TAX 20 OCT Ax 0

for some x ̅ x ̅tAx ̅ so

some x ̅ IT A x ̅ so



More definitions

➢ Determine the type of the matrix

𝐴 = 𝐼.

➢ 𝐵 = 1 −1
−1 1
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1 12 0

I is pos det

let x
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c 312 0 B is pos semide



More definitions
Theorem 4. A symmetric matrix A is positive-definite if and only if all its eigenvalues are 

positive.

• Note: we can also calculate the upper left determinants

Example: 2 −1
−1 2
































































Av dv
to find eigenvalues

solve det A XI 0

To find all eigenvalues

solve det
2 d I

I 2 x
0

2 1 1 0

2 1
by Th y all

2 1 eigenvalues are

2
3 19 is

positive def



Optimality conditions
One-dimensional case  - assume that that 𝑓(𝑥) has continuous second-order partial 
derivatives for each 𝑥.

➢ Taylor series expansion of 𝑓(𝑥) centred at 𝑎 : 𝑓 𝑥 = σ𝑛=0
∞ 𝑓 𝑛 (𝑎)

𝑛!
(𝑥 − 𝑎)𝑛; 

linear approximation would be 

➢ First-order necessary optimality condition: 
If 𝑥∗ is a local minimum of 𝑓(𝑥) then 𝑓′ 𝑥∗ = 0 .
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otherwise
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Optimality conditions
One-dimensional case  - assume that that 𝑓(𝑥) has continuous second-order partial 
derivatives for each 𝑥.

➢ Second-order sufficient optimality condition:
If 𝑓′ 𝑥∗ = 0 𝑎𝑛𝑑 𝑓′′ 𝑥∗ > 0, then  𝑥∗ is a local minimum. 
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Optimality conditions
Multidimensional case  - assume that that 𝑓(𝑥) has continuous second-order partial 
derivatives for each point 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) in 𝑅𝑛.

➢ By Taylor’s Theorem for a small deviation 𝒅 = (𝑑1, 𝑑2,… , 𝑑𝑛)𝑇 :
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Optimality conditions
Multidimensional case  - assume that that 𝑓(𝑥) has continuous second-order partial 
derivatives for each point 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) in 𝑅𝑛.

➢ First-order necessary optimality condition: 
If 𝑥∗ is a local minimum of 𝑓(𝑥) then ∇𝑓(𝑥∗) = 0
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Optimality conditions
Multidimensional case  - assume that that 𝑓(𝑥) has continuous second-order partial 
derivatives for each point 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) in 𝑅𝑛.

➢ Second-order sufficient optimality condition:
If ∇𝑓 𝑥∗ = 0 𝑎𝑛𝑑 ∇2𝑓 𝑥∗ is positive − definate, then  𝑥∗ is a local minimum.
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Summary: necessary and sufficient conditions for 
min problem
Theorem 5-min. (Necessary conditions) If 𝑥∗ is a local minimum for an 

unconstrained NLP problem min 𝑓(𝑥), then 

➢ ∇f(𝑥∗) = 0, and

➢ 𝛻2f(𝑥∗) is positive semidefinite.

Theorem 6-min. (Sufficient conditions)  

➢ If ∇f(𝑥∗) = 0, and

➢ 𝛻2f(𝑥∗) is positive-definite, 

then 𝑥∗ is a local minimum for the unconstrained NLP problem min 𝑓 𝑥 .

3


































































Summary: necessary and sufficient conditions for 
max problem
Theorem 5-max. (Necessary conditions) If 𝑥∗ is a local maximum for an 

unconstrained NLP problem m𝑎𝑥 𝑓(𝑥), then 

➢ ∇f(𝑥∗) = 0, and

➢ 𝛻2f(𝑥∗) is negative-semidefinite.

Theorem 6-max. (Sufficient conditions)  

➢ If ∇f(𝑥∗) = 0, and

➢ 𝛻2f(𝑥∗) is negative-definite, 

then 𝑥∗ is a local maximum for the unconstrained NLP problem max𝑓 𝑥 .
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Example 
➢ For 𝑓 𝒙 = 2𝑥12 + 𝑥22 − 2𝑥1𝑥2 +2𝑥13 +𝑥14

a) Determine minimizers and maximizers 

b) Indicate what kind of max/min are these points (local, global, strict etc)
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1 Need both Df 31 and D f x

f x
1 222 6 sep 4x

2212 22
2

4
17224 1201,2 2

f a
2 2


















































































































2 Find x Df x 0

14791
222 6 xp 4 13 0

2712 2x 0 21 212

42 2x 67 4 x 0 2

x 32,2 2 13 0

x 2x 3x 1 0

11 0 x
3 0 1

f x 0 when

8

x 1
x

f 0,0 1 2
use th 4
solve

det 4 1
2

2 2 1
0

1 d 2 1 4 0

I r


















































































































X 61 4
255

6 F 6
315s 0

all eigenvalues of D f 0,0 are pos ve

by Thy f 0,0 pos def x 0,0 is
local minimiser

f 1 1
4 2

2 2 pos def x 1 1 is
local minimiser

by the

f

try use th 4 det 0

1 1 2 x 4 0

x2 31 2 0

1 so
cannot

1 31 8
o

use Th 4




















































































































use definition x 0

l i
x 212 2011 2012 742 21,012 21,72 21

x 41 x Yx 2x x 2x 52 2

x 2012 1240 x 20

1 4 2 x 0 x o
D f

Indefinite
so 10,01 and 1 1 are local min

f 0,0 not unique local min

f 1 1

x 2x x2 x2 x 1 2x x

x x2 x 1 x 20 for any x

0,0 and 1 1 are

global minimisers



Necessary and sufficient conditions
Theorem 7. Consider a function 𝑓(𝑥) defined in a convex domain. Then

➢ Necessary condition for convexity: if  𝑓(𝑥) is convex , then 𝛻2𝑓(𝑥) is 

positive-semidefinite everywhere in its domain.

➢ Sufficient condition for strict convexity:  Function 𝑓(𝑥) is strictly convex if its 

Hessian matrix 𝛻2𝑓(𝑥) is positive- definite for all 𝑥 in its domain. 

➢ Example: 𝑓 𝒙 = 𝑥12 − 𝑥1𝑥2 + 𝑥22 − 3𝑥2

















































































































































































Find min

f x 12 1 x2

x 2 2 3

ffc 2 test using the 4

det t XI 0 2 1 I

see above

1 1 12 3

f ol is positive def for

all x

f x strictly convex byTh 7

Find min f x Solve Df x

21 12 0

Eiiii.it

3x2 6 12 2 x 1

by Th 6 Df 1 2 0 and D f 1,2 posdef
112 is local min



Theorem 7 - example
➢ Example: 𝑓 𝒙 = 𝑥12 − 𝑥1𝑥2 + 𝑥22 − 3𝑥2
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by Th 3 1,2 is unique global min
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Unconstrained non-linear optimisation – some results 

➢ Theorem 1. Assume that 𝑓(𝑥) has continuous second-order partial 

derivatives for each point 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛). Then 𝑓(𝑥)  is convex function on D   

if and only if for each   𝑥∈ D all principal minors of its Hessian are nonnegative.  

➢ Theorem 2. Assume that that 𝑓(𝑥) has continuous second-order partial 

derivatives for each point 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛). Then 𝑓(𝑥)  is concave function on 

D   if and only if for each   𝑥∈ D  and 𝑘 = 1 … 𝑛  all nonzero 𝑘𝑡ℎ   principal minors 

of its Hessian matrix have the same sign as (−1)𝑘.  

➢ Theorem 3.  If f(x) is a convex function and 𝑆 is a convex set, then any local 

minimum of the minimisation NLP 

                                                               min 𝑓(𝑥) 

𝑠. 𝑡.   𝑥 ∈  𝑆 

is also a global minimum. If f(x) is a strictly convex function, then the global 

minimum will be unique. 

➢ Theorem 4. A symmetric matrix A is positive definite if and only if all its 

eigenvalues are positive. Note: we can also calculate the upper left 

determinants 

➢ Theorem 5. (Second-order necessary condition) If 𝑥∗ is a local minimum for 

an unconstrained NLP problem 𝑚𝑖𝑛 𝑓(𝑥),  then  

∇f(𝑥∗) = 0, and  𝛻2f(𝑥∗) is positive semidefinite. 

➢ Theorem 6. (Second-order sufficient condition)   

If ∇f(𝑥∗) = 0, and 𝛻2f(𝑥∗) is positive definite,  

then 𝑥∗ is a local minimum for the unconstrained NLP problem min 𝑓(𝑥). 

➢ Theorem 7. Consider a function 𝑓(𝑥) defined in a convex domain. Then 

Necessary condition for convexity: if  𝑓(𝑥) is convex , then 𝛻2𝑓(𝑥)  is positive 

semidefinite everywhere in its domain. 

Sufficient condition for strict convexity:  Function 𝑓(𝑥) is strictly convex if its 

Hessian matrix 𝛻2𝑓(𝑥) is positive definite for all 𝑥 in its domain.  
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Gradient methods - motivation
Finding stationary points is not always possible or easy

Gradient methods 

is 

a group of iterative procedures  that approximate stationary points 

by applying the optimality conditions .

11:20!

































































Gradient methods
➢Consider the nonlinear NLP: min 𝑓 𝑥 and let 𝑥0 be the first _________;     𝒅𝟎 - initial 
direction; 𝛼 – scalar. By Taylor’s Theorem:

➢Basic idea (for min problem):
1. Start an iteration k with 𝑥𝑘 and chose direction 𝒅𝒌, so _________

2. Find 𝛼𝑘 such that ______________________

3. Let  𝑥𝑘+1 = _________________

➢ In what follows, 𝒅𝒌 is chosen as _______________________
































































approximation

floc and f a ffc.lt fIEgt t1 f
flock f x Ldr

0 kt 2nd k mais f x 2dk

Dk 2k dk

dk Dk Df Xe
where Dr is pos def

flock 2k dk flock flock
T
DkDf a α

myflock 2k dk f Xk



Steepest descend method
Step 0. Choose a starting point 𝑥0, and a small positive scalar 𝜀. Set 𝑘 = 0. 

Step 1. If ∇f(𝑥𝑘) < 𝜀, then STOP: 𝑥𝑘 is a satisfactory approximate minimum of 𝑓(𝑥).
Otherwise, set  𝒅𝒌 = −∇f(𝑥𝑘)

Step 2. Choose the step size 𝛼𝑘 by solving the one-dimensional problem
min
𝛼>0

𝑔(𝛼) = min
𝛼>0

𝑓(𝑥𝑘 + 𝛼𝒅𝒌).

Set 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝒅𝒌. Set 𝑘 = 𝑘 + 1 and go to Step 1.
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Example 
➢ Find min 𝑓 𝒙 = 𝑥12 − 𝑥1𝑥2 + 𝑥22 − 3𝑥2
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f x 12 1 x2

x 2 2 3

IE x 8

f 0,0 9 1 Df 0,0111 E

2 d Df 0,0 2d

T


















































































































min g x at stat point g 2 0

g x 18 2 9 0 α

4 x

Itis x Df 0 3 L 07

1 1Mt 0 E

2 d f 0 32

ads

3 g 2 f 31,2 422 42 9

9 2 12 4 0 2 1

4 x x a d
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x f 3 3 3

2 0

1 11 3 11734 E

2 d Df

x a d

3 9 2 f 342

2 3

9 2 2 2 x 4 0

982 0

82 1 0 α

4 x

3
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Newton’s method

1. Let 𝑔 𝑥 = 𝑓 𝑥𝑘 + ∇𝑓 𝑥𝑘 𝑇 𝑥 − 𝑥𝑘 + 1
2
𝑥 − 𝑥𝑘 𝑇∇2𝑓 𝑥𝑘 𝑥 − 𝑥𝑘

2. 𝑚𝑖𝑛 𝑔 𝑥 ⇒ ∇𝑔 𝑥 = 0

3. ∇𝑔 𝑥 = ∇𝑓 𝑥𝑘 + ∇2𝑓 𝑥𝑘 𝑥 − 𝑥𝑘 = 0

4. Solve (3) for 𝑥:

I
1k current approximation

IF ftp.e
f x e x xx Df Rk

x xx f x Df xn

K 7k f x xp f x



Newton’s method
Step 0. Choose a starting point 𝑥0, and a small positive scalar 𝜀. Set 𝑘 = 0. 

Step 1. If ∇f(𝑥𝑘) < 𝜀, then STOP: 𝑥𝑘 is a satisfactory approximate minimum 

of 𝑓(𝑥). Otherwise, set  

𝑥𝑘+1 = 𝑥𝑘 −

Step 2. Set 𝑘 = 𝑘 + 1 and go to Step 1 .

f x xD f or



Example 
➢ Find min 𝑓 𝒙 = 𝑥12 − 𝑥1𝑥2 + 𝑥22 − 3𝑥2

f x 12 1 x2

x 2 2 3

fla p't
o x1

51 f 0,0 0 35 1 Df 0,011 3 E



scan x n't at 010

t 11 1 1
It 1

1 Df 112 11Df 12 0 LE

1 is Local min


