

Introduction to Optimisation:

Unconstrained Nonlinear Programming

Lecture 8

Lecture notes by Dr. Julia Memar and Dr. Hanyu Gu and with an acknowledgement to Dr.FJ Hwang and Dr.Van Ha Do

Let f(x) is be nonlinear function of vector $\mathbf{x} = (x_1, x_2, ..., x_n)$ defined over the domain $D \subseteq \mathbb{R}^n$. Consider an NLP problem

> If $D = R^n$, then we have an unconstrained non-linear problem (NLP)

$$\min_{x \in D} f(x)$$
 (or $\max_{x \in D} f(x)$)

where no constraints are placed on the decision variables x.

Introduction – some definitions

> Global minimum:

A point (x^*) is a global *minimiser* or a global minimum point of a function f(x) if

- The value $f(x^*)$ is a global minimum value of f(x).
- A **strict** global minimiser or a **strict** global minimum point is defined as

$$x^*$$
 is global minimiser if $f(x^*) \leq f(x)$ For x in Domain x^* is strict global minimiser if $f(x^*) \leq f(x)$ for any x in Domain

Introduction – some definitions

> Local minimum:

A point x^* is a local *minimiser* or a local minimum point of a function f(x) if

- The value $f(x^*)$ is a local minimum value of f(x).
- A strict local minimiser or a strict local minimum point is defined as

x* is a local minimiser, if
there exists
$$S \subseteq D$$
:
 $f(x^*) \le f(x)$ for any $x \in S$
strict local minimiser if
there exists $S \in D$

> It is possible for a function to have

both global and local minimisers:

neither global nor local minimisers:

> It is possible for a function to have

In this course we will consider only a specific type of NLP problems – minimising a convex function (or maximising a concave function) over a convex set.

Definitions:

Assume that f(x) has continuous second-order partial derivatives. For each point $x = (x_1, x_2, ..., x_n)$ denote:

point
$$x = (x_1, x_2, ..., x_n)$$
 denote:

$$\nabla f(x) : \begin{cases} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \end{cases}$$

$$\frac{\partial f}{\partial x_n}$$

of f(x): $\frac{\partial f}{\partial x_1}$ $\frac{\partial f}{\partial x_2}$ $\frac{\partial f}{\partial x_1}$ $\frac{\partial f}{\partial x_2}$ $\frac{\partial f}{\partial x_2}$ $\frac{\partial f}{\partial x_1}$ $\frac{\partial f}{\partial x_2}$ $\frac{\partial f}{\partial x_2}$ $\frac{\partial f}{\partial x_2}$ $\frac{\partial f}{\partial x_3}$ $\frac{\partial f}{\partial x_2}$ $\frac{\partial f}{\partial x_3}$ $\frac{\partial f}{\partial x_4}$ $\frac{\partial f}{\partial x_2}$ $\frac{\partial f}{\partial x_3}$ $\frac{\partial f}{\partial x_4}$ $\frac{\partial f}{\partial x_4}$ $\frac{\partial f}{\partial x_5}$ $\frac{\partial f}{\partial x_5}$

Definitions:

Assume that f(x) has continuous second-orde point $x = (x_1, x_2, ..., x_n)$ denote:

Hessian matrix: • $\nabla^2 f(x)$ is h×n symmetrical matrix: Clairout's theorem

Definitions:

 \succ **i**th **principal minor(s) of** $n \times n$ **matrix** is the determinant of any $i \times i$ matrix obtained by deleting (n - i) row(s) and the corresponding (n - i) column(s) of the matrix.

Definitions: = 3; i=1, 2, 3

Example 1:
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 1 & 0 & 0 \end{pmatrix}$$
1st principal minor(s):

1, 5, 0

 2^{nd} principal minor(s): l = 2 l = 1

$$\det\begin{pmatrix} 5 & 6 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} = 0 \qquad \det\begin{pmatrix} 1 & 2 \\ 4 & 5 \end{pmatrix} = -3$$

$$\det\begin{pmatrix} 1 & 3 \\ 1 & 0 \end{pmatrix} = -3$$

 3^{rd} principal minor(s): i = 3, n - i = 0

$$\det \left(\frac{1}{4} \right) = 1 \times \det \left(\frac{2}{5} \right) - 0 \times \det \left(\frac{1}{4} \right) + 0 \times \det \left(\frac{1}{4} \right) = -3$$

Convex function

A function f(x) is **convex** if for any two points (or vectors) $x_1 \in D$ and $x_2 \in D$ and for any $\alpha \in [0,1]$

Theorem 1. Assume that f(x) has continuous second-order partial derivatives for each point $x = (x_1, x_2, ..., x_n)$. Then f(x) is convex function on D if and only if for each $x \in D$ all principal minors of its Hessian are nonnegative.

Convex function

> Example 2: $f(x) = x_1^2 + 2x_1x_2 + x_2^2$ - is it convex?

$$\nabla f(x) = \langle 2x_1 + 2x_2, 2x_1 + 2x_2 \rangle$$

$$\nabla^2 f(x) = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} \Rightarrow same$$
for
all x

1p.m:
$$2_12 > 0$$

 2^{14} p.m: $det\binom{2}{2} \stackrel{2}{=} 0$
by Th 1 all p.m are ≥ 0 ,

Concave function

A function f(x) is **concave** if for any two points (or vectors) $x_1 \in D$ and $x_2 \in D$ and for any $\alpha \in [0,1]$ = + (-+) = 2

$$f(\alpha x_1 + (1 - \alpha)x_2) \ge \alpha f(x_1) + (1 - \alpha)f(x_2).$$

$$f(\tilde{x}) > df(x_1) + (1-d)f(x_2)$$

f(x)

- Theorem 2. Assume that that f(x) has continuous second-order partial derivatives for each point $x = (x_1, x_2, ..., x_n)$. Then f(x) is concave function on D if and only if for each $x \in D$ and k = 1 ... n all nonzero k^{th} principal minors of its Hessian matrix have the same sign as $(-1)^k$.
- · det (-A) = (-1) det A
- if f(x) is concewed

 -f(x) is concewed $x = x^2$

Concave function

ightharpoonup Example 3: $f(x) = -3x_1^2 + 4x_1x_2 - 2x_2^2$

$$\nabla f(x)^{T} = \langle -6x_1 + 4x_2, 4x_1 - 4x_2 \rangle$$

$$\nabla^2 f(x) = \begin{pmatrix} -6 & 4 \\ 4 & -4 \end{pmatrix}$$

$$1^{s+} p \cdot m \cdot : -6, -4 < 0$$
as $(-1)^{2}$

2 p.m:
$$det \begin{pmatrix} -6 & 4 \\ 4 & -4 \end{pmatrix} = 8 > 0$$
 as $(-1)^2$
Kence by Th 2 $f(x)$ is concave

ÖUTS

Convex set – some results

- A set S is **convex** if for any two points (or vectors) $x_1 \in S$ and $x_2 \in S$ and for any $\alpha \in [0,1]$ $\alpha x_1 + (1 \alpha)x_2 \in S$.
- If g(x) is a convex function, then the set $S = \{x : g(x) \le c\}$, for any constant c is f(x)

convex one it as a challenge

ightharpoonup If g(x) is a convex function, then the set

$$S = \{u = (x|y) = (x_1, x_2, ..., x_n, y) : y \ge g(x)\}$$

is a convex set of \mathbb{R}^{n+1} . If you "colour in" above the graph of a convex function, then you get a convex set.

Convex set – some results

ightharpoonup Theorem 3. If f(x) is a convex function and S is a convex set, then any local minimum of the minimisation NLP

$$\min_{x \in S} f(x)$$

is also a global minimum. If f(x) is a strictly convex function, then the global minimum will be unique.

$$f(x)$$
 is strictly convex, if for any $x_1 \in S$ $x_2 \in S$ and $\tilde{x} = \lambda x_1 + (1-\lambda) x_2$, $\lambda \in (0,1)$ $f(\tilde{x}) < \lambda f(x_1) + (1-\lambda) f(x_2)$

More definitions

for any
$$x \neq 0$$

Let A be $n \times n$ symmetric matrix. Then A is

Positive-definite if

$$x^T A x > 0$$

> Positive- semidefinite if

$$x^T A x \ge 0$$

> Negative- definite if

$$x^T A x < 0$$

Negative- semidefinite if

$$x^T A x \leq 0$$

> Indefinite if

More definitions

 $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$

> Determine the type of the matrix

$$A = I.$$
 if $x \neq 0$

$$x^{T} \int_{x}^{T} x = x^{T} x = x_{1}^{2} + x_{2}^{2} + ... + x_{n}^{2} = |x|^{2} > 0$$

$$= |x|^{2} > 0$$
It is pos. - def.

= $(x_1 - x_2)^2 > 0 \rightarrow B$ is pos-semidef.

$$P = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$
Let $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

$$\begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 - x_2 \\ 1 \end{pmatrix} - x_1 + x_2 \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} =$$

$$= x_1^2 - x_1 x_2 - x_1 x_2 + x_2^2 =$$

$$Av = \lambda v$$

More definitions

To find eigenvalues

Theorem 4. A symmetric matrix A is positive-definite if and only if all its eigenvalues are positive.

Solve $Act (A - \lambda I) = 0$.

Note: we can also calculate the upper left determinants

One-dimensional case - assume that that f(x) has continuous second-order partial derivatives for each x.

> Taylor series expansion of f(x) centred at $a: f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$;

S =
$$x - x$$

$$\begin{cases} f(x^4 + \delta) \approx f(x^4) + f'(x^4) \delta \\ f(x^4 + \delta) \approx f(x^4) + f'(x^4) \delta \end{cases}$$

First-order <u>necessary</u> optimality condition:

If x^* is a local minimum of f(x) then $f'(x^*) = 0$.

if
$$f'(x^*) > 0$$
 \Rightarrow choose $\delta < 0$ if $f'(x^*) < 0 \Rightarrow \delta > 0$

$$f(x^* + \delta) < f(x^*)$$

$$f(x^*) < f(x^*)$$

One-dimensional case - assume that that f(x) has continuous second-order partial derivatives for each x.

> Second-order <u>sufficient</u> optimality condition:

If $f'(x^*) = 0$ and $f''(x^*) > 0$, then x^* is a local minimum.

Multidimensional case - assume that that f(x) has continuous second-order partial derivatives for each point $x = (x_1, x_2, ..., x_n)$ in \mathbb{R}^n .

ightharpoonup By Taylor's Theorem for a small deviation $oldsymbol{d}=(d_1,d_2,...,d_n)^T$:

$$f(x^*+d) \approx f(x^*) + \nabla f(x^*)^{T} d + \frac{1}{2} d^{T} \nabla^{2} f(x^*) d + o(||d||)$$

$$\frac{\partial^{2} f(x^*)}{\partial x^{2}} + di$$

$$\lim_{i=1}^{n} \frac{\partial^{2} f(x^*)}{\partial x_{i}} + di$$

$$\lim_{i=1}^{n} \frac{\partial^{2} f(x^*)}{\partial x_{i}} d_{i} d_{j}$$

$$x^* \text{ is some point}$$

Multidimensional case - assume that that f(x) has continuous second-order partial derivatives for each point $x = (x_1, x_2, ..., x_n)$ in \mathbb{R}^n .

First-order <u>necessary</u> optimality condition:

If x^* is a local minimum of f(x) then $\nabla f(x^*) = 0$

$$f(x^*+d) \approx f(x^*) + \nabla f(x^*) d$$

if $\nabla f(x^*) \neq 0$,
then we always
can choose d:
 $\nabla f(x^*) d < 0 \Rightarrow$
 x^* is not local min x

Multidimensional case - assume that that f(x) has continuous second-order partial derivatives for each point $x = (x_1, x_2, ..., x_n)$ in \mathbb{R}^n .

> Second-order *sufficient* optimality condition:

If $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive – definate, then x^* is a local minimum.

Summary: necessary and sufficient conditions for min problem

Theorem 5-min. (Necessary conditions) If x^* is a local minimum for an unconstrained NLP problem $\min f(x)$, then

- $ightharpoonup \nabla f(x^*) = 0$, and
- $ightharpoonup
 abla^2 f(x^*)$ is positive semidefinite.

Theorem 6-min. (Sufficient conditions)

- ightharpoonup If $\nabla f(x^*) = 0$,•and
- $ightharpoonup
 abla^2 f(x^*)$ is positive-definite,

then x^* is a local minimum for the unconstrained NLP problem min f(x).

Summary: necessary and sufficient conditions for max problem

Theorem 5-max. (Necessary conditions) If x^* is a local maximum for an unconstrained NLP problem $\max f(x)$, then

- $ightharpoonup \nabla f(x^*) = 0$, and
- $ightharpoonup
 abla^2 f(x^*)$ is negative-semidefinite.

Theorem 6-max. (Sufficient conditions)

- ightharpoonup If $\nabla f(x^*) = 0$, and
- $\triangleright \nabla^2 f(x^*)$ is negative-definite,

then x^* is a local maximum for the unconstrained NLP problem $\max f(x)$.

10:21

Example

> For
$$f(\mathbf{x}) = 2x_1^2 + x_2^2 - 2x_1x_2 + 2x_1^3 + x_1^4$$

- a) Determine minimizers and maximizers
- b) Indicate what kind of max/min are these points (local, global, strict etc)

1. Need both
$$\nabla f(x)$$
 and $\nabla^2 f(x)$

$$\nabla f(x) = \begin{pmatrix} 4x_1 - 2x_2 + 6x_1^2 + 4x_1^3 \\ 2x_2 - 2x_1 \\ x_1 & x_2 \\ 4 + 12x_1 + 12x_1^2 & -2 \end{pmatrix}$$

\$\frac{\tau^2 f(x)}{\tau UTS}

2. Find
$$x: \nabla f(x) = 0$$
.

$$\int 4x_1 - 2x_2 + 6x_1^2 + 4x_1^3 = 0$$

$$2x_2 - 2x_1 = 0 \implies x_1 = x_2$$

$$4x_1 - \lambda x_1 + 6x_1^2 + 4x_1^3 = 0 \div 2$$

$$x_1 + 3x_1^2 + 2x_1^3 = 0$$

$$x_1(2x_1^2 + 3x_1 + 1) = 0$$

$$x_1 = -3 \pm \sqrt{9 - 8}$$

$$x_1 = -\frac{3 \pm \sqrt{9 - 8}}{4} = \frac{7}{4}$$

$$\nabla f(x) = 0$$
 when

$$X = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$x = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$x = \begin{pmatrix} -1/2 \\ \end{pmatrix}$$

$$\chi = \begin{pmatrix} -1/2 \\ -1/2 \end{pmatrix}$$

$$\nabla^2 f(\theta_1 \theta) = \begin{pmatrix} 4 & -2 \end{pmatrix}$$

$$\nabla^2 f(\theta_1 \theta) = \begin{pmatrix} 4 & -2 \\ -2 & 2 \end{pmatrix} \rightarrow \text{use th. } 4:$$
solve
$$\det \begin{pmatrix} 4 - \lambda & -2 \\ -2 & 2 \end{pmatrix} = 0.$$

$$(4-\lambda)(2-\lambda) - 4=0$$

 $\nabla^2 f(x) = \begin{pmatrix} x_1 & x_1 + 12x_1^2 & -2 \\ -2 & 2 \end{pmatrix}$

$$\lambda^{2} - 6\lambda + 4 = 0$$

$$\lambda = \frac{6 \pm \sqrt{36 - 16}}{2} = \frac{6 \pm \sqrt{20}}{2} = 3 \pm \sqrt{5} > 0$$

all eigenvalues of $\nabla^2 f(0,0)$ are pos-ve

by Thy $\nabla^2 f(0,0)$ pos-def $\Rightarrow x = (0,0)$ is

local minimiser

 $\nabla^{2} f(-1,-1) = \begin{pmatrix} 4 & -2 \\ -2 & 2 \end{pmatrix} \rightarrow pos. - def \rightarrow xe(-1,-1) is$ 10cal minimiser 6y Th. 6

$$\nabla^2 f\left(-\frac{1}{2}, -\frac{1}{2}\right) = \begin{pmatrix} 1 & -2 \\ -2 & 2 \end{pmatrix}$$

Try use Th. 4: $\det\begin{pmatrix} 1-\lambda & -2 \\ -2 & 2-\lambda \end{pmatrix} = 0$

$${\binom{1-\lambda}{2}-\lambda}-\gamma=0$$

$$\lambda_2 = \frac{3 - \sqrt{9 + 8}}{20}$$

y can not use Th. 4.

use definition:
$$x \neq 0$$

$$(x_1 \ x_2) \begin{pmatrix} 1 & -2 \\ -2 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} =$$

$$= (x_1 - 2x_2) - 2x_1 + 2x_2 \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = x_1^2 - 2x_1x_2 - 2x_1x_2 - 2x_1x_2 + 2x_2^2$$

$$= x_1^2 - 4x_1x_2 + 4x_1^2 - 2x_2^2 = (x_1 - 2x_2)^2 - (\sqrt{2} x_2)^2 = (x)$$

$$x_1 = 2x_2; \quad x_2 \neq 0 \Rightarrow (x) < 0 \Rightarrow \sqrt{2}f(-\frac{1}{2}) -$$

$$x_1 = 4x_2; \quad x_2 \neq 0 \Rightarrow (x) > 0 \Rightarrow \sqrt{2}f(-\frac{1}{2}) -$$

$$x_1 = 4x_2; \quad x_2 \neq 0 \Rightarrow (x) > 0 \Rightarrow \sqrt{2}f(-\frac{1}{2}) -$$

$$x_1 = 4x_2; \quad x_2 \neq 0 \Rightarrow (x) > 0 \Rightarrow \sqrt{2}f(-\frac{1}{2}) -$$

$$x_1 = 4x_2; \quad x_2 \neq 0 \Rightarrow (x) > 0 \Rightarrow \sqrt{2}f(-\frac{1}{2}) -$$

$$x_1 = 4x_2; \quad x_2 \neq 0 \Rightarrow (x) > 0 \Rightarrow \sqrt{2}f(-\frac{1}{2}) -$$

$$x_1 = 4x_2; \quad x_2 \neq 0 \Rightarrow (x) > 0 \Rightarrow \sqrt{2}f(-\frac{1}{2}) -$$

$$x_1 = 4x_2; \quad x_2 \neq 0 \Rightarrow (x) > 0 \Rightarrow \sqrt{2}f(-\frac{1}{2}) -$$

$$x_1 = 4x_2; \quad x_2 \neq 0 \Rightarrow (x) > 0 \Rightarrow \sqrt{2}f(-\frac{1}{2}) -$$

$$x_2 = 4x_2; \quad x_2 \neq 0 \Rightarrow (x) > 0 \Rightarrow \sqrt{2}f(-\frac{1}{2}) -$$

$$x_1 = 4x_2; \quad x_2 \neq 0 \Rightarrow (x) > 0 \Rightarrow \sqrt{2}f(-\frac{1}{2}) -$$

$$x_2 = 4x_2; \quad x_2 \neq 0 \Rightarrow (x) > 0 \Rightarrow \sqrt{2}f(-\frac{1}{2}) -$$

$$x_1 = 4x_2; \quad x_2 \neq 0 \Rightarrow (x) > 0 \Rightarrow \sqrt{2}f(-\frac{1}{2}) -$$

$$x_2 = 4x_2; \quad x_2 \neq 0 \Rightarrow (x) > 0 \Rightarrow \sqrt{2}f(-\frac{1}{2}) -$$

$$x_1 = 4x_2; \quad x_2 \neq 0 \Rightarrow (x) > 0 \Rightarrow \sqrt{2}f(-\frac{1}{2}) -$$

$$x_2 = 4x_2; \quad x_2 \neq 0 \Rightarrow (x) > 0 \Rightarrow \sqrt{2}f(-\frac{1}{2}) -$$

$$x_1 = 4x_2; \quad x_2 \neq 0 \Rightarrow (x) > 0 \Rightarrow \sqrt{2}f(-\frac{1}{2}) -$$

$$x_2 = 4x_2; \quad x_2 \neq 0 \Rightarrow (x) > 0 \Rightarrow \sqrt{2}f(-\frac{1}{2}) -$$

$$x_1 = 4x_2; \quad x_2 \neq 0 \Rightarrow (x) > 0 \Rightarrow \sqrt{2}f(-\frac{1}{2}) -$$

$$x_2 = 4x_2; \quad x_2 \neq 0 \Rightarrow (x) > 0 \Rightarrow \sqrt{2}f(-\frac{1}{2}) -$$

$$x_2 = 4x_2; \quad x_2 \neq 0 \Rightarrow (x) > 0 \Rightarrow \sqrt{2}f(-\frac{1}{2}) -$$

$$x_1 = 4x_2; \quad x_2 \neq 0 \Rightarrow (x) > 0 \Rightarrow \sqrt{2}f(-\frac{1}{2}) -$$

$$x_2 = 4x_2; \quad x_3 \neq 0 \Rightarrow (x) > 0 \Rightarrow \sqrt{2}f(-\frac{1}{2}) -$$

$$x_1 = 4x_2; \quad x_2 \neq 0 \Rightarrow (x) > 0 \Rightarrow \sqrt{2}f(-\frac{1}{2}) -$$

$$x_2 = 4x_2; \quad x_3 \neq 0 \Rightarrow (x) > 0 \Rightarrow \sqrt{2}f(-\frac{1}{2}) -$$

$$x_1 = 4x_2; \quad x_2 \neq 0 \Rightarrow (x) > 0 \Rightarrow \sqrt{2}f(-\frac{1}{2}) -$$

$$x_2 = 4x_2; \quad x_3 \neq 0 \Rightarrow (x) > 0 \Rightarrow \sqrt{2}f(-\frac{1}{2}) -$$

$$x_3 = 4x_3; \quad x_4 \neq 0 \Rightarrow (x) > 0 \Rightarrow \sqrt{2}f(-\frac{1}{2}) -$$

$$x_4 = 4x_4; \quad x_4 \neq 0 \Rightarrow (x) = 0 \Rightarrow (x)$$

$$r f(x) = 2x_1^2 + x_2^2 - 2x_1x_2 + 2x_1^3 + x_1^4 =$$

$$= x_1^2 - 2x_1x_2 + x_2^2 + x_1^2 (1 + 2x_1 + x_1^2) =$$

$$= (x_1 - x_2)^2 + x_1^2 (1 + x_1)^2 \ge 0 \quad \text{for any } x$$

$$(0, 0) \quad \text{and} \quad (-1, -1) \quad \text{are}$$

$$global \quad \text{minimisers}.$$

Necessary and sufficient conditions

Theorem 7. Consider a function f(x) defined in a convex domain. Then

- ightharpoonup Necessary condition for convexity: if f(x) is convex, then $\nabla^2 f(x)$ is positive-semidefinite everywhere in its domain.
- ightharpoonup Sufficient condition for strict convexity: Function f(x) is strictly convex if its Hessian matrix $\nabla^2 f(x)$ is positive- definite for all x in its domain.

ightharpoonup Example: $f(x) = x_1^2 - x_1x_2 + x_2^2 - 3x_2$

$$f(x) = x_1^2 - x_1 x_2 + x_2^2 - 3x_2 \quad \Rightarrow \quad \text{Find} \quad \text{min}$$

$$\nabla f(x) = \begin{pmatrix} \lambda x_1 - x_2 \\ -x_1 + \lambda x_2 - 3 \end{pmatrix}$$

$$\nabla^2 f(x) = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \rightarrow \text{ Test using Th 4:}$$

det
$$(\nabla^2 f - \lambda I) = 0 \Rightarrow (2 - \lambda)^2 = 1$$

see above

 $\lambda_1 = 1 \quad \lambda_2 = 3$
 $\nabla^2 f(x)$ is positive-det for all x

of (x) strictly convex (by Th. 7).

Find min f(x): Solve $\nabla f(x) = \emptyset$

$$\begin{cases} 2x_1 - x_2 = 0 & 0 \\ -x_1 + 2x_2 - 3 = 0 & 2 \times 2 \end{cases}$$

$$2x_1 - x_2 - 2x_1 + 4x_2 - 6 = 0$$

$$3x_2 = 6; x_2 = 2; x_1 = 1$$

by Th 6 $\nabla f(1,2) = 0$ and $\nabla^2 f(1,2)$ -pos def \Rightarrow (1,2) is local min

by Th 3 (1,2) is unique global min Theorem 7 - example

ightharpoonup Example: $f(x) = x_1^2 - x_1x_2 + x_2^2 - 3x_2$

Unconstrained non-linear optimisation - some results

- **Theorem 1.** Assume that f(x) has continuous second-order partial derivatives for each point $x = (x_1, x_2, ..., x_n)$. Then f(x) is convex function on D if and only if for each $x \in D$ all principal minors of its Hessian are nonnegative.
- **Theorem 2.** Assume that that f(x) has continuous second-order partial derivatives for each point $x = (x_1, x_2, ..., x_n)$. Then f(x) is concave function on D if and only if for each $x \in D$ and k = 1 ... n all nonzero k^{th} principal minors of its Hessian matrix have the same sign as $(-1)^k$.
- **Theorem 3**. If f(x) is a convex function and S is a convex set, then any local minimum of the minimisation NLP

$$\min f(x)$$

$$s.t. x \in S$$

- is also a global minimum. If f(x) is a strictly convex function, then the global minimum will be unique.
- ➤ **Theorem 4.** A symmetric matrix A is positive definite if and only if all its eigenvalues are positive. Note: we can also calculate the upper left determinants
- **Theorem 5.** (Second-order necessary condition) If x^* is a local minimum for an unconstrained NLP problem min f(x), then

 $\nabla f(x^*) = 0$, and $\nabla^2 f(x^*)$ is positive semidefinite.

> **Theorem 6**. (Second-order sufficient condition)

If $\nabla f(x^*) = 0$, and $\nabla^2 f(x^*)$ is positive definite,

then x^* is a local minimum for the unconstrained NLP problem $\min f(x)$.

Theorem 7. Consider a function f(x) defined in a convex domain. Then

<u>Necessary condition for convexity:</u> if f(x) is convex, then $\nabla^2 f(x)$ is positive semidefinite everywhere in its domain.

<u>Sufficient condition for strict convexity:</u> Function f(x) is strictly convex if its Hessian matrix $\nabla^2 f(x)$ is positive definite for all x in its domain.

Gradient methods - motivation

Finding stationary points is not always possible or easy

is

a group of iterative procedures that approximate stationary points

by applying the optimality conditions.

Gradient methods

Consider the nonlinear NLP: $\min f(x)$ and let x_0 be the first _____; d_0 - initial direction; α – scalar. By Taylor's Theorem:

Fasic idea (for min problem):

$$f(x_0 + \lambda d) \approx f(x_0) + \nabla f(x_0) + \frac{1}{2} d + \frac{1}{2} d$$

- 1. Start an iteration k with x_k and chose direction d_k , so $f(x_k) > f(x_k + \lambda d_k)$
- 2. Find α_k such that $\frac{f(x_k + a_k d_k)}{f(x_k + a_k d_k)} = \min_{a>0} f(x_k + a_k d_k)$
- 3. Let $x_{k+1} = \frac{x_k + d_k d_k}{x_{k+1}}$
- In what follows, d_k is chosen as $\frac{d_k = -D_k \nabla f(x_k)}{D_k \text{ observed}}$ where D_k is pos-def: $f(x_k + d_k d_k) = f(x_k) - \nabla f(x_k)^T D_k \nabla f(x_k) d_k$

Steepest descend method

 \longrightarrow Step 0. Choose a starting point x_0 , and a small positive scalar ε . Set k=0.

It. K

Step 1. If $\|\nabla f(x_k)\| < \varepsilon$, then STOP: x_k is a satisfactory approximate minimum of f(x). Otherwise, set $d_k = -\nabla f(x_k)$

Step 2. Choose the step size α_k by solving the one-dimensional problem

$$\min_{\alpha>0} g(\alpha) = \min_{\alpha>0} f(x_k + \alpha d_k).$$

Set $x_{k+1} = x_k + \alpha_k d_k$. Set k = k + 1 and go to Step 1.

Example

Find min
$$f(x) = x_1^2 - x_1x_2 + x_2^2 - 3x_2$$

Let
$$x^{(0)} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
; $\varepsilon = \frac{1}{2}$

$$f(\mathbf{x}) = x_1^2 - x_1 x_2 + x_2^2 - 3x_2$$

$$\nabla f(x) = \begin{pmatrix} 2x_1 - x_2 \\ -x_1 + 2x_2 - 3 \end{pmatrix}$$

$$\underline{\text{It. 0}} \quad x^{(0)} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\underbrace{\text{It. 0}}_{\text{0}} \quad \text{x}^{\text{(0)}} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\lambda \cdot d_0 = -\nabla f(0,0) = \begin{pmatrix} 0 \\ 3 \end{pmatrix} \rightarrow \chi^{(0)} + \lambda d_0 = \begin{pmatrix} 0 \\ 3 \lambda \end{pmatrix}$$

3.
$$g(a) = f(0, 3a) = 9a^2 - 9a$$

min
$$g(a)$$
 at stat. point : $g'(a) = 0$.

$$g'(d) = 18d - 9 = 0 \rightarrow d = 1$$

$$4. \quad x^{(0)} = \begin{pmatrix} 0 \\ \frac{3}{2} \end{pmatrix}$$

$$\underline{\text{It. 1}} \quad \mathbf{x}^{(i)} = \begin{pmatrix} 0 \\ \frac{3}{2} \end{pmatrix}; \quad \nabla f \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} \frac{3}{2} \end{pmatrix}^{T} = \begin{pmatrix} -\frac{3}{2} \\ 1 \end{pmatrix}, \quad 0 > 0$$

1.
$$\|\nabla f(0, \frac{3}{2})\| = \frac{3}{2} > \varepsilon$$

1.
$$d_1 = -\nabla f(0, \frac{3}{2}) = \begin{pmatrix} \frac{3}{2} \\ 0 \end{pmatrix}$$

 $x^{(1)} + \lambda d_1 = \begin{pmatrix} 0 \\ \frac{3}{2} \end{pmatrix} + \begin{pmatrix} \frac{3}{2} \lambda \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{3}{2} \lambda \\ \frac{3}{2} \lambda \end{pmatrix}$

3.
$$g(\lambda) = f(3/2 \lambda, 3/2) = \frac{q}{4} \lambda^2 - \frac{q}{4} \lambda + \frac{q}{4} - \frac{q}{2}$$

$$g'(\lambda) = \frac{18}{4}\lambda - \frac{9}{4} = 0 \Rightarrow \lambda = \frac{1}{2}$$

4.
$$x^{(2)} = x^{(1)} + a_1 d_1 = \begin{pmatrix} \frac{3}{4} \\ \frac{3}{2} \end{pmatrix}$$

It. 2
$$x^{(2)} = \begin{pmatrix} 34 \\ 3/2 \end{pmatrix} \quad \nabla f \left(\frac{3}{4}, \frac{3}{2} \right) = \langle \frac{3}{2}, -\frac{3}{4}, \frac{3}{4} + 3 - 3 \rangle$$

$$= \langle 0, -\frac{3}{4} \rangle$$

$$| \cdot | | \nabla f \left(\frac{3}{4}, \frac{3}{2} \right) | | \neq \frac{3}{4} \rangle \varepsilon$$

1.
$$\|\nabla f(x_1, 2)\| + |y| \ge 2$$

2. $d_2 = \begin{pmatrix} 0 \\ 3/4 \end{pmatrix} = -\nabla f \begin{pmatrix} 3/4 & 3/2 \\ 4/4 & 3/2 \end{pmatrix}$

$$x^{(2)} + dd_2 = \begin{pmatrix} 3/4 \\ 3/2 \end{pmatrix} + \begin{pmatrix} 0 \\ 3/4 d \end{pmatrix} = \begin{pmatrix} 3/4 \\ 3/2 \end{pmatrix}.$$

3.
$$g(\lambda) = f(\frac{3}{4}, \frac{3}{4} + \frac{3}{4}\lambda) =$$

 $f(x) = x_1^2 - x_1x_2 + x_2^2 - 3x_2$

$$= \frac{1}{16} - \frac{3}{4} \left(\frac{3}{4} + \frac{3}{4} \right) + \left(\frac{3}{4} + \frac{3}{4} \right)^2 - 3 \left(\frac{3}{4} + \frac{3}{4} \right)$$

$$g'(\lambda) = -\frac{9}{16} + \lambda(\frac{3}{2} + \frac{3}{4}\lambda) \times \frac{3}{4} - \frac{9}{4} = 0.$$

$$-\frac{q}{16} + \frac{q}{16} + \frac{q}{16} = 0.$$

$$\frac{1}{16} + \frac{1}{18} + \frac{1}{8} \cdot \frac{1}{18} = 0.$$

$$\frac{9}{8} \cdot \frac{9}{16} = 0 \quad d = \frac{1}{2} \quad \frac{1}{18} = 0.$$

$$\frac{1}{18} \cdot \frac{9}{18} \cdot \frac{1}{18} = 0.$$

4.
$$x^{(3)} = \begin{pmatrix} \frac{3}{4} \\ \frac{3}{2} + \frac{3}{8} \end{pmatrix} = \begin{pmatrix} \frac{3}{4} \\ \frac{15}{8} \end{pmatrix}$$

$$\frac{\text{It}}{\nabla f} \begin{pmatrix} 3/4 \\ 15/8 \end{pmatrix} = \begin{pmatrix} 3/2 - \frac{15}{8} \\ -\frac{3}{4} + \frac{15}{4} - 3 \end{pmatrix} = \begin{pmatrix} 3/4 \\ 15/8 \end{pmatrix} = \begin{pmatrix} 3/4 \\ -\frac{3}{4} + \frac{15}{4} - 3 \end{pmatrix} = \begin{pmatrix} 3/4 \\ 15/8 \end{pmatrix} \text{ is sufficiently of close approximate that }$$

$$\|\nabla f(\frac{3}{3}, \frac{1}{3})\| = \frac{3}{2} < \frac{1}{2} \Rightarrow \chi = (\frac{3}{3}, \frac{3}{3}) \text{ is }$$

- current approximation

Newton's method

1. Let
$$g(x) = f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2} (x - x_k)^T \nabla^2 f(x_k) (x - x_k)$$

2. $\min g(x) \Rightarrow \nabla g(x) = 0$

$$2. \min g(x) \Rightarrow \nabla g(x) = 0^{\circ}$$

3.
$$\nabla g(x) = \nabla f(x_k) + \nabla^2 f(x_k)(x - x_k) = 0$$

$$x^{K+1} = x^{K} - \left[\Delta_{s} + (x^{K}) \right] * \Delta_{t}(x^{K})$$

$$x - x^{K} = \left[\Delta_{s} + (x^{K}) \right] * \left(- \Delta_{t}(x^{K}) \right)$$

$$\Delta_{s} + (x^{K})(x - x^{K}) = -\Delta_{t}(x^{K})$$

Newton's method

Step 0. Choose a starting point x_0 , and a small positive scalar ε . Set k = 0.

Step 1. If $\|\nabla f(x_k)\| < \varepsilon$, then STOP: x_k is a satisfactory approximate minimum of f(x). Otherwise, set

$$x_{k+1} = x_k - \left[\nabla^2 f(x_k) \right] \times \nabla f(x_k)$$

Step 2. Set k = k + 1 and go to Step 1.

Example

Find min : $f(x) = x_1^2 - x_1x_2 + x_2^2 - 3x_2$

$$\nabla f(x) = \begin{pmatrix} 2x_1 - x_2 \\ -x_1 + 2x_2 - 3 \end{pmatrix}$$

$$\nabla^{2}f(x) = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \left[\nabla^{2}f\right]^{-1} = \frac{1}{3}\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

$$0. \quad x^{(0)} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}; \quad \mathcal{E} = \frac{1}{2}$$

$$0. \quad \mathfrak{A}^{(0)} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \; ; \quad \overset{\backprime}{\mathcal{E}} = \frac{1}{2}$$

It. 0
$$\nabla f(0,0)^T = \langle 0,-3\rangle; \|\nabla f(0,0)\| = 3 > \varepsilon.$$

$$x^{(1)} = x^{(0)} - \left[\nabla^2 f\right] \nabla f(0_1 0) =$$

$$= {0 \choose 0} - \frac{1}{3} {2 \choose 1} = -\frac{1}{3} {-3 \choose -3} = -\frac{1}{3} {-3 \choose 2} = {1 \choose 2}$$

It. 1.

1.
$$\nabla f(1,2) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \| \nabla f(1,2) \| = 0 < \varepsilon$$

$$\chi = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \text{ is Local min}$$