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Introduction

> Let f(x) is be nonlinear function of vector x = (x4, x5, ..., x,,) defined over

the domain D < R"™. Consider an NLP problem

min f (x) (or max f (x))

> If D = R™, then we have an unconstrained non-linear problem (NLP)

min f (x) (or max f (x))

where no constraints are placed on the decision variables x.
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Introduction — some definitions

> Global minimum:

A point x* is a global minimiser or a global minimum point of a function f(x) if

« The value f(x*) is a global minimum value of f(x).

« A strict global minimiser or a strict global minimum point is defined as

FUTS



Introduction — some definitions
> Local minimum:

A point x* is a local minimiser or a local minimum point of a function f(x) if
« The value f(x*) is a local minimum value of f(x).

« Astrict local minimiser or a strict local minimum point is defined as

FUTS



Introduction

» Itis possible for a function to have

» both global and local minimisers: > neither global nor local minimisers:
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Introduction

» Itis possible for a function to have
» alocal minimiser and yet no global > multiple global minimisers

minimiser:;

» unique global minimizer
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Introduction

» In this course we will consider only a specific type of NLP problems —
minimising a convex function (or maximising a concave function)

over a convex set.
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Definitions:

Assume that f(x) has continuous second-order partial derivatives. For each
point x = (x4, x,, ..., x,) denote:

» Gradient of f(x) :
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Definitions:

Assume that f(x) has continuous second-order partial derivatives. For each
point x = (x4, x,, ..., x,) denote:

> Hessian matrix:
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Definitions:

> it" principal minor(s) of n x n matrix is the determinant of any i x i matrix
obtained by deleting (n — i) row(s) and the corresponding (n — i) column(s)
of the matrix.

Example: A = (:i _41) 1t principal minor(s) :

2"d principal minor(s) :
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Definitions:

1 2 3
Example 1: A = (4 5 6) 18t principal minor(s) :
1 0 O

2"d principal minor(s) :

3" principal minor(s) :
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Convex function

» Afunction f(x) is convex if for any two points (or vectors) x; € D and x, € D and for

any a € [0,1]

flaxi + (1 — a)xz) < af(x) + (1 — a)f(x).

» Theorem 1. Assume that f(x) has continuous second-order partial derivatives for
each point x = (x4, x5, ..., x,). Then f(x) is convex function on D if and only if for

each xe€ D all principal minors of its Hessian are nonnegative.
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Convex function
> Example 2: f(x) = x% + 2xyx, + x2
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Concave function

» Afunction f(x) is concave if for any two points (or vectors) x; € D and x, € D and for

any a € [0,1]

flax; + (1 — a)xz) = af (x1) + (1 — a)f(xz).

» Theorem 2. Assume that that f(x) has continuous second-order partial derivatives for
each point x = (x4,x5,...,x,). Then f(x) is concave function on D if and only if for
each xe D and k = 1..n all nonzero k" principal minors of its Hessian matrix

have the same sign as (—1)*.
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Concave function |
> Example 3: f(x) = —3x2 + 4x,;x, — 2




Convex set —some results

> Aset Sis convex if for any two points (or vectors) x; € S and x, € S and for any a €

[0,1] ax;+ (1 — a)x, €S.

> If g(x) is a convex function, thenthe set S = {x: g(x) < c} for any constant c is

convex

> If g(x) is a convex function, then the set

S = {u = (xly) = (x11x27 ---;xn;Y) : y = g(.X')}
is a convex set of R™*1, If you “colour in” above the graph of a convex function, then you

get a convex set.
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Convex set —some results

» Theorem 3. If f(x) is a convex function and S is a convex set, then any local minimum

of the minimisation NLP

min f(x
min f(x)
Is also a global minimum. If f(x) is a strictly convex function, then the global minimum will

be unique.
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More definitions

Let A be n X n symmetric matrix. Then 4 is

» Positive-definite if » Positive- semidefinite if
> Negative- definite if > Negative- semidefinite if
» Indefinite if
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More definitions

» Determine the type of the matrix
A=1.
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More definitions

Theorem 4. A symmetric matrix A is positive-definite if and only if all its eigenvalues are

positive.

* Note: we can also calculate the upper left determinants

Example: [_21 _21]
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Optimality conditions

One-dimensional case - assume that that f(x) has continuous second-order partial
derivatives for each x.

(n)
> Taylor series expansion of f(x) centredata: f(x) = Xn—¢ ! n'(a) (x —a)

linear approximation would be

» First-order necessary optimality condition:

If x* is a local minimum of f(x) then f'(x*) =0.
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Optimality conditions

One-dimensional case - assume that that f(x) has continuous second-order partial
derivatives for each x.

» Second-order sufficient optimality condition:
If f'(x*) =0and f"(x*) > 0, then x* is alocal minimum.
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Optimality conditions

Multidimensional case - assume that that f(x) has continuous second-order partial
derivatives for each point x = (x4, x5, ..., x,) in R™.

> By Taylor’'s Theorem for a small deviation d = (dy,d,, ..., d;))T :
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Optimality conditions

Multidimensional case - assume that that f(x) has continuous second-order partial
derivatives for each point x = (x4, x5, ..., x,) In R™.

> First-order necessary optimality condition:

If x* is a local minimum of f(x) then Vf(x*) =0
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Optimality conditions

Multidimensional case - assume that that f(x) has continuous second-order partial
derivatives for each point x = (x4, x5, ..., x,) in R™.

» Second-order sufficient optimality condition:
If VF(x*) =0 and V?f(x*) is positive — definate, then x* is a local minimum.

FUTS



Summary: necessary and sufficient conditions for
min problem

Theorem 5-min. (Necessary conditions) If x* is a local minimum for an
unconstrained NLP problem min f(x), then
» Vf(x*) =0, and

> V4f(x*) is positive semidefinite.

Theorem 6-min. (Sufficient conditions)
» If Vi(x*) =0, and
> V2f(x*) is positive-definite,

then x* is a local minimum for the unconstrained NLP problem min f(x).
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Summary: necessary and sufficient conditions for
max problem

Theorem 5-max. (Necessary conditions) If x* is a local maximum for an
unconstrained NLP problem max f(x), then
» Vi(x*) =0, and

> V4f(x*) is negative-semidefinite.

Theorem 6-max. (Sufficient conditions)
» If Vi(x*) =0, and
> V2f(x*) is negative-definite,

then x* is a local maximum for the unconstrained NLP problem max f(x).
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Example

> For f(x) = 2x% + x2 — 2xyx, +2x3 +x7

a) Determine minimizers and maximizers

b) Indicate what kind of max/min are these points (local, global, strict etc)
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Necessary and sufficient conditions
Theorem 7. Consider a function f(x) defined in a convex domain. Then

> Necessary condition for convexity: if f(x) is convex , then V%f(x) is

positive-semidefinite everywhere in its domain.

» Sufficient condition for strict convexity: Function f(x) is strictly convex if its

Hessian matrix V2 f(x) is positive- definite for all x in its domain.

> Example: f(x) = x# — x;x, + x5 — 3x,
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Theorem 7 - example

> Example: f(x) = x? — xyx, + x2 — 3x,
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11:20!
Gradient methods - motivation

Finding stationary points is not always possible or easy

Gradient methods
IS
a group of iterative procedures that approximate stationary points

by applying the optimality conditions .
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Gradient methods

»Consider the nonlinear NLP: min f(x) and let x, be the first . dp - initial
direction; a — scalar. By Taylor’s Theorem:

»Basic idea (for min problem):
1. Start an iteration k with x; and chose direction d,, so

2. Find a; such that

3. Let Xk+1 -

» In what follows, dj, is chosen as
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Steepest descend method

Step 0. Choose a starting point x,, and a small positive scalar €. Set k = 0.

Step 1. If ||Vf(x )|l < €, then STOP: x;, is a satisfactory approximate minimum of f(x).
Otherwise, set dj = —Vf(xy)

Step 2. Choose the step size a; by solving the one-dimensional problem

min g(a) = min f(x, + ady).

Set x441 =x; + aidy. Setk = k + 1and go to Step 1.
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Example

> Find min f(x) = x# — x;x, + x5 — 3x,
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Newton’s method

1. Let g(x) = f(x) + VF ()T (x — 1) + 5 (2 = x) V2 £ () (x — i)
2. ming(x) > Vg(x) =0

3.Vg(x) = Vf(xp) + V2f(xp)(x —x) =0

4. Solve (3) for x:
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Newton’s method

Step 0. Choose a starting point x,, and a small positive scalar €. Set k = 0.

Step 1. If ||Vf(x;)|| < €, then STOP: x,, is a satisfactory approximate minimum

of f(x). Otherwise, set

Xk+1 — Xk —

Step2.Setk = k + 1landgoto Step 1.
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Example

> Find min f(x) = x# — x;x, + x5 — 3x,
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