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Introduction

➢ Let 𝑓(𝑥) is be  nonlinear function of vector 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) defined over 

the domain 𝐷 ⊆ 𝑅𝑛. Consider an NLP problem

min
𝒙∈𝐷

𝑓(𝑥) (or m𝑎𝑥
𝒙∈𝐷

𝑓(𝑥))

➢ If 𝐷 = 𝑅𝑛, then we have an unconstrained non-linear problem (NLP)

min
𝒙∈𝐷

𝑓(𝑥) (or m𝑎𝑥
𝒙∈𝐷

𝑓(𝑥))

where no constraints are placed on the decision variables x. 



Introduction – some definitions

➢ Global minimum: 

A point 𝒙∗ is a global minimiser or a global minimum point of a function 𝑓 𝒙 if

• The value 𝑓 𝒙∗ is a global minimum value of 𝑓 𝒙 .

• A strict global minimiser or a strict global minimum point is  defined as 



Introduction – some definitions

➢ Local minimum:

A point 𝒙∗ is a local minimiser or a local  minimum point of a function 𝑓 𝒙 if

• The value 𝑓 𝒙∗ is a local minimum value of 𝑓 𝒙 .

• A strict local minimiser or a strict local minimum point is defined as 



Introduction

➢ It is possible for a function to have

➢ both global and local minimisers: ➢ neither global nor local minimisers:



Introduction

➢ It is possible for a function to have

➢ a local minimiser and yet no global 

minimiser;

➢ multiple global minimisers

➢ unique global minimizer



Introduction

➢ In this course we will consider only a specific type of NLP problems –

minimising a convex function (or maximising a concave function) 

over a convex set.



Definitions:

Assume that f(x) has continuous second-order partial derivatives. For each 

point 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) denote:

➢ Gradient of   f(x) :



Definitions:

Assume that f(x) has continuous second-order partial derivatives. For each 

point 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) denote:

➢ Hessian matrix:



Definitions:

➢ 𝒊𝒕𝒉 principal minor(s) of 𝒏 × 𝒏 matrix is the determinant of any 𝑖 × 𝑖 matrix 

obtained by deleting (𝑛 − 𝑖) row(s) and the corresponding (𝑛 − 𝑖) column(s) 

of the matrix. 

Example: 𝐴 =
−2 −1
−1 4

1st principal minor(s) :

2nd principal minor(s) :



Definitions:

Example 1: 𝐴 =
1 2 3
4 5 6
1 0 0

1st principal minor(s) :

2nd principal minor(s) :

3rd principal minor(s) :



Convex function 

➢ A function 𝑓(𝑥) is convex if for any two points (or vectors) 𝑥1 ∈ D and 𝑥2 ∈ D and for 

any 𝛼 ∈ [0,1]

𝑓(𝛼𝑥1 + (1 − 𝛼)𝑥2) ≤ 𝛼𝑓(𝑥1) + (1 − 𝛼)𝑓(𝑥2).

➢ Theorem 1. Assume that 𝑓(𝑥) has continuous second-order partial derivatives for 

each point 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛). Then 𝑓(𝑥) is convex function on D if and only if for 

each 𝑥∈ D all principal minors of its Hessian are nonnegative. 



Convex function 

➢ Example 2:  𝑓 𝑥 = 𝑥1
2 + 2𝑥1𝑥2 + 𝑥2

2



Concave function 

➢ A function 𝑓(𝑥) is concave if for any two points (or vectors) 𝑥1 ∈ D and 𝑥2 ∈ D and for 

any 𝛼 ∈ [0,1]

f(𝛼𝑥1 + (1 − 𝛼)𝑥2) ≥ 𝛼𝑓(𝑥1) + (1 − 𝛼)𝑓(𝑥2).

➢ Theorem 2. Assume that that 𝑓(𝑥) has continuous second-order partial derivatives for 

each point 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛). Then 𝑓(𝑥) is concave function on D if and only if for 

each 𝑥∈ D  and 𝑘 = 1…𝑛 all nonzero 𝑘𝑡ℎ principal minors of its Hessian matrix 

have the same sign as (−1)𝑘. 



Concave function 

➢ Example 3: 𝑓 𝑥 = −3𝑥1
2 + 4𝑥1𝑥2 − 2𝑥2

2

2



Convex set – some results

➢ A set 𝑆 is convex if for any two points (or vectors) 𝑥1 ∈ 𝑆 and 𝑥2 ∈ 𝑆 and for any 𝛼 ∈

[0,1] 𝛼𝑥1 + (1 − 𝛼)𝑥2 ∈ 𝑆.

➢ If 𝑔(𝑥) is a convex function, then the set 𝑆 = {𝑥 ∶ 𝑔(𝑥) ≤ 𝑐} for any constant 𝑐 is 

convex

➢ If 𝑔(𝑥) is a convex function, then the set

𝑆 = {𝑢 = (𝑥|𝑦) = (𝑥1, 𝑥2, … , 𝑥𝑛, y) : 𝑦 ≥ 𝑔(𝑥)}

is a convex set of 𝑅𝑛+1. If you “colour in” above the graph of a convex function, then you 

get a convex set.



Convex set – some results

➢ Theorem 3.  If f(x) is a convex function and 𝑆 is a convex set, then any local minimum 

of the minimisation NLP

min
𝑥 ∈ 𝑆

𝑓 𝑥

is also a global minimum. If f(x) is a strictly convex function, then the global minimum will 

be unique.



More definitions

Let 𝐴 be 𝑛 × 𝑛 symmetric matrix. Then 𝐴 is 

➢ Positive-definite if 

➢ Negative- definite if 

➢ Indefinite if 

➢ Positive- semidefinite if

➢ Negative- semidefinite if



More definitions

➢ Determine the type of the matrix

𝐴 = 𝐼.

➢ 𝐵 =
1 −1
−1 1



More definitions

Theorem 4. A symmetric matrix A is positive-definite if and only if all its eigenvalues are 

positive.

• Note: we can also calculate the upper left determinants

Example: 
2 −1
−1 2



Optimality conditions

One-dimensional case  - assume that that 𝑓(𝑥) has continuous second-order partial 

derivatives for each 𝑥.

➢ Taylor series expansion of 𝑓(𝑥) centred at 𝑎 : 𝑓 𝑥 = σ𝑛=0
∞ 𝑓 𝑛 (𝑎)

𝑛!
(𝑥 − 𝑎)𝑛; 

linear approximation would be 

➢ First-order necessary optimality condition: 

If 𝑥∗ is a local minimum of 𝑓(𝑥) then 𝑓′ 𝑥∗ = 0 .



Optimality conditions

One-dimensional case  - assume that that 𝑓(𝑥) has continuous second-order partial 

derivatives for each 𝑥.

➢ Second-order sufficient optimality condition:

If 𝑓′ 𝑥∗ = 0 𝑎𝑛𝑑 𝑓′′ 𝑥∗ > 0, then  𝑥∗ is a local minimum. 



Optimality conditions

Multidimensional case  - assume that that 𝑓(𝑥) has continuous second-order partial 

derivatives for each point 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) in 𝑅𝑛.

➢ By Taylor’s Theorem for a small deviation 𝒅 = (𝑑1, 𝑑2, … , 𝑑𝑛)
𝑇 :



Optimality conditions

Multidimensional case  - assume that that 𝑓(𝑥) has continuous second-order partial 

derivatives for each point 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) in 𝑅𝑛.

➢ First-order necessary optimality condition: 

If 𝑥∗ is a local minimum of 𝑓(𝑥) then ∇𝑓(𝑥∗) = 0



Optimality conditions

Multidimensional case  - assume that that 𝑓(𝑥) has continuous second-order partial 

derivatives for each point 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) in 𝑅𝑛.

➢ Second-order sufficient optimality condition:

If ∇𝑓 𝑥∗ = 0 𝑎𝑛𝑑 ∇2𝑓 𝑥∗ is positive − definate, then  𝑥∗ is a local minimum.



Summary: necessary and sufficient conditions for 
min problem

Theorem 5-min. (Necessary conditions) If 𝑥∗ is a local minimum for an 

unconstrained NLP problem min 𝑓(𝑥), then 

➢ ∇f(𝑥∗) = 0, and

➢ 𝛻2f(𝑥∗) is positive semidefinite.

Theorem 6-min. (Sufficient conditions)  

➢ If ∇f(𝑥∗) = 0, and

➢ 𝛻2f(𝑥∗) is positive-definite, 

then 𝑥∗ is a local minimum for the unconstrained NLP problem min 𝑓 𝑥 .

3



Summary: necessary and sufficient conditions for 
max problem

Theorem 5-max. (Necessary conditions) If 𝑥∗ is a local maximum for an 

unconstrained NLP problem m𝑎𝑥 𝑓(𝑥), then 

➢ ∇f(𝑥∗) = 0, and

➢ 𝛻2f(𝑥∗) is negative-semidefinite.

Theorem 6-max. (Sufficient conditions)  

➢ If ∇f(𝑥∗) = 0, and

➢ 𝛻2f(𝑥∗) is negative-definite, 

then 𝑥∗ is a local maximum for the unconstrained NLP problem max𝑓 𝑥 .



Example 

➢ For 𝑓 𝒙 = 2𝑥1
2 + 𝑥2

2 − 2𝑥1𝑥2 +2𝑥1
3 +𝑥1

4

a) Determine minimizers and maximizers 

b) Indicate what kind of max/min are these points (local, global, strict etc)



Necessary and sufficient conditions

Theorem 7. Consider a function 𝑓(𝑥) defined in a convex domain. Then

➢ Necessary condition for convexity: if  𝑓(𝑥) is convex , then 𝛻2𝑓(𝑥) is 

positive-semidefinite everywhere in its domain.

➢ Sufficient condition for strict convexity:  Function 𝑓(𝑥) is strictly convex if its 

Hessian matrix 𝛻2𝑓(𝑥) is positive- definite for all 𝑥 in its domain. 

➢ Example: 𝑓 𝒙 = 𝑥1
2 − 𝑥1𝑥2 + 𝑥2

2 − 3𝑥2



Theorem 7 - example

➢ Example: 𝑓 𝒙 = 𝑥1
2 − 𝑥1𝑥2 + 𝑥2

2 − 3𝑥2



Gradient methods - motivation

Finding stationary points is not always possible or easy

Gradient methods 

is 

a group of iterative procedures  that approximate stationary points 

by applying the optimality conditions .

11:20!



Gradient methods

➢Consider the nonlinear NLP: min 𝑓 𝑥 and let 𝑥0 be the first _________;     𝒅𝟎 - initial 

direction; 𝛼 – scalar. By Taylor’s Theorem:

➢Basic idea (for min problem):

1. Start an iteration k with 𝑥𝑘 and chose direction 𝒅𝒌, so _________

2. Find 𝛼𝑘 such that ______________________

3. Let  𝑥𝑘+1 = _________________

➢ In what follows, 𝒅𝒌 is chosen as _______________________



Steepest descend method

Step 0. Choose a starting point 𝑥0, and a small positive scalar 𝜀. Set 𝑘 = 0. 

Step 1. If ∇f(𝑥𝑘) < 𝜀, then STOP: 𝑥𝑘 is a satisfactory approximate minimum of 𝑓(𝑥).
Otherwise, set  𝒅𝒌 = −∇f(𝑥𝑘)

Step 2. Choose the step size 𝛼𝑘 by solving the one-dimensional problem

min
𝛼>0

𝑔(𝛼) = min
𝛼>0

𝑓(𝑥𝑘 + 𝛼𝒅𝒌).

Set 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝒅𝒌. Set 𝑘 = 𝑘 + 1 and go to Step 1.



Example 

➢ Find min 𝑓 𝒙 = 𝑥1
2 − 𝑥1𝑥2 + 𝑥2

2 − 3𝑥2



Newton’s method

1. Let 𝑔 𝑥 = 𝑓 𝑥𝑘 + ∇𝑓 𝑥𝑘
𝑇 𝑥 − 𝑥𝑘 +

1

2
𝑥 − 𝑥𝑘

𝑇∇2𝑓 𝑥𝑘 𝑥 − 𝑥𝑘

2. 𝑚𝑖𝑛 𝑔 𝑥 ⇒ ∇𝑔 𝑥 = 0

3. ∇𝑔 𝑥 = ∇𝑓 𝑥𝑘 + ∇2𝑓 𝑥𝑘 𝑥 − 𝑥𝑘 = 0

4. Solve (3) for 𝑥:



Newton’s method

Step 0. Choose a starting point 𝑥0, and a small positive scalar 𝜀. Set 𝑘 = 0. 

Step 1. If ∇f(𝑥𝑘) < 𝜀, then STOP: 𝑥𝑘 is a satisfactory approximate minimum 

of 𝑓(𝑥). Otherwise, set  

𝑥𝑘+1 = 𝑥𝑘 −

Step 2. Set 𝑘 = 𝑘 + 1 and go to Step 1 .



Example 

➢ Find min 𝑓 𝒙 = 𝑥1
2 − 𝑥1𝑥2 + 𝑥2

2 − 3𝑥2


