

Introduction to Optimisation:

Unconstrained Nonlinear Programming

Lecture 8

Lecture notes by Dr. Julia Memar and Dr. Hanyu Gu and with an acknowledgement to Dr.FJ Hwang and Dr.Van Ha Do

Let f(x) is be nonlinear function of vector $x = (x_1, x_2, ..., x_n)$ defined over the domain $D \subseteq \mathbb{R}^n$. Consider an NLP problem

$$\min_{x \in D} f(x) \text{ (or } \max_{x \in D} f(x))$$

 \triangleright If $D = \mathbb{R}^n$, then we have an unconstrained non-linear problem (NLP)

$$\min_{x \in D} f(x) \text{ (or } \max_{x \in D} f(x))$$

where no constraints are placed on the decision variables x.

Introduction – some definitions

➤ Global minimum:

A point x^* is a global *minimiser* or a global minimum point of a function f(x) if

- The value $f(x^*)$ is a global minimum value of f(x).
- A strict global minimiser or a strict global minimum point is defined as

Introduction – some definitions

Local minimum:

A point x^* is a local **minimiser** or a local minimum point of a function f(x) if

- The value $f(x^*)$ is a local minimum value of f(x).
- A strict local minimiser or a strict local minimum point is defined as

- > It is possible for a function to have
 - both global and local minimisers:
- > neither global nor local minimisers:

- ➤ It is possible for a function to have
 - a local minimiser and yet no global minimiser;
- > multiple global minimisers

> unique global minimizer

➤ In this course we will consider only a specific type of NLP problems – minimising a *convex* function (or maximising a *concave* function) over a *convex set*.

Assume that f(x) has continuous second-order partial derivatives. For each point $x = (x_1, x_2, ..., x_n)$ denote:

 \triangleright Gradient of f(x):

Assume that f(x) has continuous second-order partial derivatives. For each point $x = (x_1, x_2, ..., x_n)$ denote:

> Hessian matrix:

 $ightharpoonup i^{th}$ principal minor(s) of $n \times n$ matrix is the determinant of any $i \times i$ matrix obtained by deleting (n-i) row(s) and the corresponding (n-i) column(s) of the matrix.

Example:
$$A = \begin{pmatrix} -2 & -1 \\ -1 & 4 \end{pmatrix}$$
 1st principal minor(s):

2nd principal minor(s):

Example 1:
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 1 & 0 & 0 \end{pmatrix}$$
 1st principal minor(s):

2nd principal minor(s):

3rd principal minor(s):

Convex function

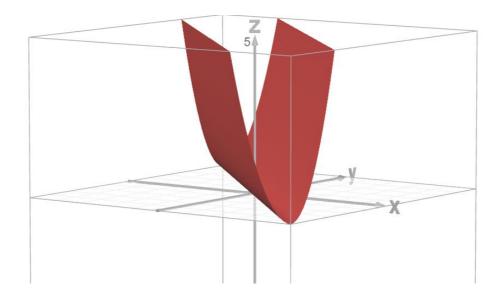
A function f(x) is **convex** if for any two points (or vectors) $x_1 \in D$ and $x_2 \in D$ and for any $\alpha \in [0,1]$

$$f(\alpha x_1 + (1 - \alpha)x_2) \le \alpha f(x_1) + (1 - \alpha)f(x_2).$$

➤ **Theorem 1.** Assume that f(x) has continuous second-order partial derivatives for each point $x = (x_1, x_2, ..., x_n)$. Then f(x) is convex function on D if and only if for each $x \in D$ all principal minors of its Hessian are nonnegative.

Convex function

> Example 2: $f(x) = x_1^2 + 2x_1x_2 + x_2^2$



Concave function

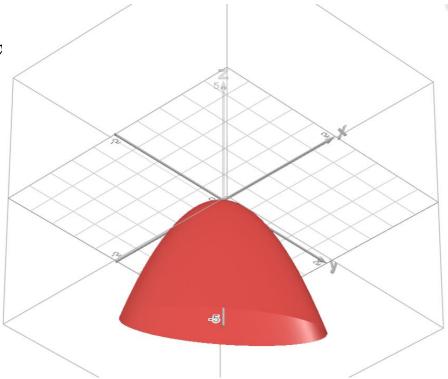
A function f(x) is **concave** if for any two points (or vectors) $x_1 \in D$ and $x_2 \in D$ and for any $\alpha \in [0,1]$

$$f(\alpha x_1 + (1 - \alpha)x_2) \ge \alpha f(x_1) + (1 - \alpha)f(x_2).$$

➤ **Theorem 2.** Assume that that f(x) has continuous second-order partial derivatives for each point $x = (x_1, x_2, ..., x_n)$. Then f(x) is concave function on D if and only if for each $x \in D$ and k = 1 ... n all nonzero k^{th} principal minors of its Hessian matrix have the same sign as $(-1)^k$.

Concave function

ightharpoonup Example 3: $f(x) = -3x_1^2 + 4x_1x_2 - 2x_1^2$



Convex set – some results

- A set *S* is *convex* if for any two points (or vectors) $x_1 \in S$ and $x_2 \in S$ and for any $\alpha \in [0,1]$ $\alpha x_1 + (1 \alpha)x_2 \in S$.
- If g(x) is a convex function, then the set $S = \{x : g(x) \le c\}$ for any constant c is convex

ightharpoonup If g(x) is a convex function, then the set

$$S = \{u = (x|y) = (x_1, x_2, ..., x_n, y) : y \ge g(x)\}$$

is a convex set of \mathbb{R}^{n+1} . If you "colour in" above the graph of a convex function, then you get a convex set.

Convex set – some results

Theorem 3. If f(x) is a convex function and S is a convex set, then any local minimum of the minimisation NLP

$$\min_{x \in S} f(x)$$

is also a global minimum. If f(x) is a strictly convex function, then the global minimum will be unique.

More definitions

Let A be $n \times n$ symmetric matrix. Then A is

Positive-definite if

> Positive- semidefinite if

➤ Negative- definite if

> Negative- semidefinite if

> Indefinite if

More definitions

> Determine the type of the matrix

$$A = I$$
.

$$B = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$

More definitions

Theorem 4. A symmetric matrix *A* is positive-definite if and only if all its *eigenvalues* are positive.

• Note: we can also calculate the upper left determinants

Example:
$$\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

One-dimensional case - assume that that f(x) has continuous second-order partial derivatives for each x.

> Taylor series expansion of f(x) centred at $a: f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$; linear approximation would be

First-order <u>necessary</u> optimality condition:

If x^* is a local minimum of f(x) then $f'(x^*) = 0$.

One-dimensional case - assume that that f(x) has continuous second-order partial derivatives for each x.

> Second-order <u>sufficient</u> optimality condition:

If $f'(x^*) = 0$ and $f''(x^*) > 0$, then x^* is a local minimum.

Multidimensional case - assume that that f(x) has continuous second-order partial derivatives for each point $x = (x_1, x_2, ..., x_n)$ in \mathbb{R}^n .

> By Taylor's Theorem for a small deviation $\mathbf{d} = (d_1, d_2, ..., d_n)^T$:

Multidimensional case - assume that that f(x) has continuous second-order partial derivatives for each point $x = (x_1, x_2, ..., x_n)$ in \mathbb{R}^n .

First-order *necessary* optimality condition:

If x^* is a local minimum of f(x) then $\nabla f(x^*) = 0$

Multidimensional case - assume that that f(x) has continuous second-order partial derivatives for each point $x = (x_1, x_2, ..., x_n)$ in \mathbb{R}^n .

> Second-order <u>sufficient</u> optimality condition:

If $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive – definate, then x^* is a local minimum.

Summary: necessary and sufficient conditions for min problem

Theorem 5-min. (Necessary conditions) If x^* is a local minimum for an unconstrained NLP problem $\min f(x)$, then

- $ightharpoonup \nabla f(x^*) = 0$, and
- $ightharpoonup
 abla^2 f(x^*)$ is positive semidefinite.

Theorem 6-min. (Sufficient conditions)

- ightharpoonup If $\nabla f(x^*) = 0$, and
- $\triangleright \nabla^2 f(x^*)$ is positive-definite,

then x^* is a local minimum for the unconstrained NLP problem min f(x).

Summary: necessary and sufficient conditions for max problem

Theorem 5-max. (Necessary conditions) If x^* is a local maximum for an unconstrained NLP problem $\max f(x)$, then

- $ightharpoonup \nabla f(x^*) = 0$, and
- $\triangleright \nabla^2 f(x^*)$ is negative-semidefinite.

Theorem 6-max. (Sufficient conditions)

- ightharpoonup If $\nabla f(x^*) = 0$, and
- $\triangleright \nabla^2 f(x^*)$ is negative-definite,

then x^* is a local maximum for the unconstrained NLP problem $\max f(x)$.

Example

For
$$f(x) = 2x_1^2 + x_2^2 - 2x_1x_2 + 2x_1^3 + x_1^4$$

- a) Determine minimizers and maximizers
- ats (local global strict etc)
- b) Indicate what kind of max/min are these points (local, global, strict etc)

Necessary and sufficient conditions

Theorem 7. Consider a function f(x) defined in a convex domain. Then

Necessary condition for convexity: if f(x) is convex, then $\nabla^2 f(x)$ is positive-semidefinite everywhere in its domain.

ightharpoonup Sufficient condition for strict convexity: Function f(x) is strictly convex if its Hessian matrix $\nabla^2 f(x)$ is positive- definite for all x in its domain.

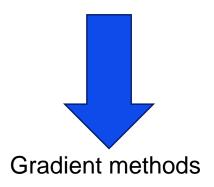
ightharpoonup Example: $f(x) = x_1^2 - x_1x_2 + x_2^2 - 3x_2$

Theorem 7 - example

ightharpoonup Example: $f(x) = x_1^2 - x_1x_2 + x_2^2 - 3x_2$

Gradient methods - motivation

Finding stationary points is not always possible or easy



is

a group of iterative procedures that approximate stationary points

by applying the optimality conditions.

Gradient methods

ightharpoonup Consider the nonlinear NLP: $\min f(x)$ and let x_0 be the first _____; d_0 - initial direction; α – scalar. By Taylor's Theorem:

➤ Basic idea (for min problem):

1. Start an iteration k with x_k and chose direction d_k , so _____

2. Find α_k such that _____

3. Let $x_{k+1} =$ ______

Steepest descend method

Step 0. Choose a starting point x_0 , and a small positive scalar ε . Set k=0.

Step 1. If $\|\nabla f(x_k)\| < \varepsilon$, then STOP: x_k is a satisfactory approximate minimum of f(x). Otherwise, set $d_k = -\nabla f(x_k)$

Step 2. Choose the step size α_k by solving the one-dimensional problem

$$\min_{\alpha>0} g(\alpha) = \min_{\alpha>0} f(x_k + \alpha \boldsymbol{d_k}).$$

Set $x_{k+1} = x_k + \alpha_k d_k$. Set k = k + 1 and go to Step 1.

Example

Find min $f(x) = x_1^2 - x_1x_2 + x_2^2 - 3x_2$

Newton's method

1. Let
$$g(x) = f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2} (x - x_k)^T \nabla^2 f(x_k) (x - x_k)$$

- 2. $min g(x) \Rightarrow \nabla g(x) = 0$
- 3. $\nabla g(x) = \nabla f(x_k) + \nabla^2 f(x_k)(x x_k) = 0$
- 4. Solve (3) for x:

Newton's method

Step 0. Choose a starting point x_0 , and a small positive scalar ε . Set k=0.

Step 1. If $\|\nabla f(x_k)\| < \varepsilon$, then STOP: x_k is a satisfactory approximate minimum of f(x). Otherwise, set

$$x_{k+1} = x_k -$$

Step 2. Set k = k + 1 and go to Step 1.

Example

Find min $f(x) = x_1^2 - x_1x_2 + x_2^2 - 3x_2$