

Introduction to Optimisation:

Constrained Nonlinear Programming

Lecture 9

Lecture notes by Dr. Julia Memar and Dr. Hanyu Gu and with an acknowledgement to Dr.FJ Hwang and Dr.Van Ha Do

Introduction

Let f(x) is be nonlinear function of vector $x = (x_1, x_2, ..., x_n)$ defined over the domain $D \subseteq \mathbb{R}^n$. Consider an NLP problem

$$\min z = f(x)$$

s.t.
$$Ax = b$$
,

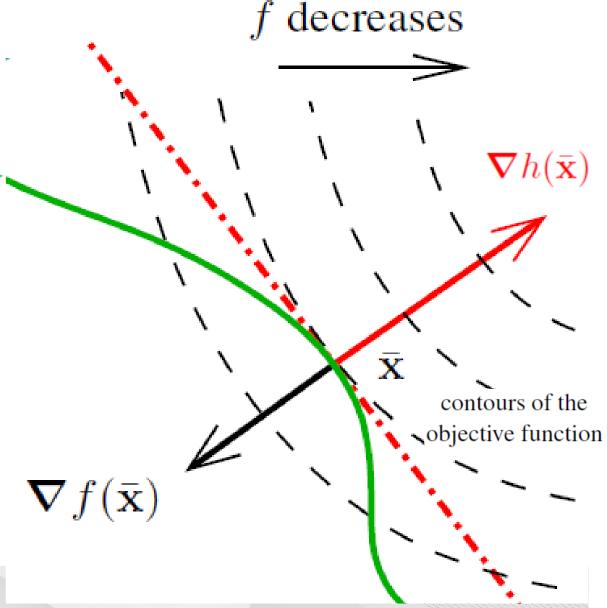
where A is $m \times n$ matrix, rank A = m

Assume that f(x) has continuous second-order partial derivatives for each point $x = (x_1, x_2, ..., x_n)$ in D =

Introduction

Improving direction and Feasible direction:

$$S = \{\mathbf{x} : h(\mathbf{x}) = 0\}$$



Preliminaries

ightharpoonup Null space of $A_{m \times n}$, $n \ge m$ is

$$N(A) = \{p: Ap = 0\}$$

 \triangleright Range space of $A_{m \times n}$

$$R(A) = \{ q \in \Re^n : q = A^T \Lambda, \Lambda \in \Re^m \}$$

 \triangleright N(A) and $R(A^T)$ are orthogonal subspaces: for $q \in R(A)$ and $p \in N(A)$:

$$q^T p = \Lambda A p = 0$$

ightharpoonup Any $x \in \Re^n$: x = p + q

Example:

$$\min f(x_1, x_2) = x_1^2 + x_2^2$$
s.t. $3x_1 + 2x_2 = 6$

In general form: Ax = b

ightharpoonup Choose x_B , then x=

$$\succ x =$$

(particular and homogeneous solutions)

> Reduced cost function is

 \triangleright The matrix Z is

of the null space of $A_{m \times n}$

Null-space basis matrix for $A_{m \times n}$ is the $n \times (n-m)$ matrix Z:

- In other words, if $A\bar{x} = b$, then any feasible point $x = \bar{x} + p$, where $p \in N(A)$
- ightharpoonup Hence Zx_n and $-Zx_n$ are all possible feasible directions for an arbitrary x_n .

Example:

$$\min f(x_1, x_2, x_3) = x_1^2 + 4x_1x_3 + x_2^2$$
s.t.
$$2x_1 + x_2 + 4x_3 = 5$$

$$3x_1 + x_2 - x_3 = 1$$

> The feasible set is

Example:

$$\min f(x_1, x_2, x_3) = x_1^2 + 4x_1x_3 + x_2^2$$
s.t.
$$2x_1 + x_2 + 4x_3 = 5$$

$$3x_1 + x_2 - x_3 = 1$$

> OR

➤ Unconstrained NLP problem with a reduced function:

$$\min \phi(x_N)$$

where
$$\phi(x_N) = f($$

- > To set optimality conditions find
 - 1. Reduced gradient $\nabla \phi(x_N) =$
 - 2. Reduced Hessian $\nabla^2 \phi(x_N) =$

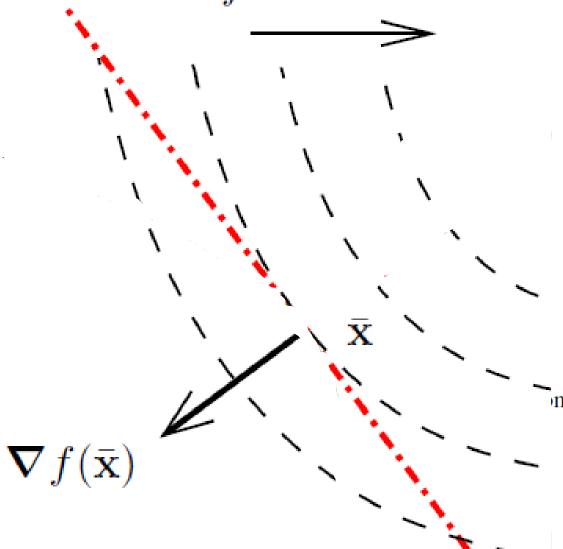
Theorem 1. (Second-order necessary conditions – Linear equality constraints)

- If x^* a local minimiser of f(x) over the set $\{x : Ax = b\}$, and Z is a basis matrix for the null-space of A, then
 - i. $Z^T \nabla f(x^*) = 0$, and
 - ii. $Z^T \nabla^2 f(x^*) Z$ is positive semidefinite.

Note: the theorem comes directly by applying Taylor's theorem on feasible directions

 $\nabla f(\bar{x})$ is ______ to $N(A)^{\dagger}$

f decreases



Theorem 2. (Second-order sufficient conditions – Linear equality constraints)

 \triangleright If Z is a basis matrix for the null-space of A and the point x^* satisfies

- i. $Ax^* = b$
- ii. $Z^T \nabla f(x^*) = 0$, and
- iii. $Z^T \nabla^2 f(x^*) Z$ is positive-definite.

then x^* a local minimiser of f(x) over the set $\{x: Ax = b\}$.

Observe that given a point x for a considered linear-equality constrained NLP problem we can apply directly the above two theorems without deriving a reduced function.

Optimality conditions - example

$$\Rightarrow \min f(x_1, x_2, x_3) = x_1^2 - 2x_1 + x_2^2 - x_3^2 + 4x_3$$
s.t. $x_1 - x_2 + 2x_3 = 2$

$$> Z = \begin{pmatrix} B^{-1}N \\ I \end{pmatrix} =$$

Optimality conditions - example

> Solve the resultant system of equations:

$$\rightarrow x^* =$$
 Check second order condition (iii) for x^* :

$$Z^T \nabla^2 f(x^*) Z =$$

with eigenvalues:

Lagrangian function – preliminaries

Let x^* a local minimiser of f(x) over the set $\{x: Ax = b\}$, and Z is a basis matrix for the null-space of A. Then $\nabla f(x^*) = Zv^* + A^T\Lambda^*$. Hence

$$\nabla f(x^*) =$$

where $\Lambda = (\lambda_1, ..., \lambda_m)$ is a vector of Lagrangian multipliers

Lagrangian function – equality constraints

> Consider an NLP problem

$$\min z = f(x)$$

s.t. $g_i(x) = b_i, i = 1..m$ (**)

 \triangleright Introduce the Lagrangian function with Lagrangian multipliers $\Lambda = (\lambda_1, ..., \lambda_m)$

$$L(x, \Lambda) =$$

Lagrangian function – equality constraints

ightharpoonup Assume that (x^*, Λ^*) minimazes $L(x, \Lambda)$. Then at (x^*, Λ^*)

$$\frac{\partial L(x,\Lambda)}{\partial \lambda_i} = 0, i = 1..m$$

Hence x^* does/does not satisfy (**).

To show that x^* is optimal, consider any feasible x':

Summary: If (x^*, Λ^*) minimazes $L(x, \Lambda)$, then x^* is ______

Example 1

$$\min f(x_1, x_2) = x_1^2 + 2x_2^2$$
s.t. $x_1^2 + x_2^2 = 1$

- a) Write the Lagrangian function for this problem.
- b) Use the Lagrangian to find local minimiser(s) for the given problem

Example 1

$$\min f(x_1, x_2) = x_1^2 + 2x_2^2$$
s.t. $x_1^2 + x_2^2 = 1$

$$\triangleright L(x_1, x_2, \lambda) =$$

$$\geqslant \nabla L(x_1, x_2, \lambda) = \Longrightarrow$$

Lagrangian function – equality constraints

> The first-order optimality condition for unconstrained NLP requires that

$$abla L(x,\Lambda) = i.e.
abla_{\Lambda} L(x,\Lambda) = and
abla_{\chi} L(x,\Lambda) = (***)$$

$$abla_{\chi} L(x,\Lambda) = \Leftrightarrow
abla f(x) = (***)$$

Any point (x', Λ') satisfying (***) is a s..... point for $L(x, \Lambda)$ and a feasible point for (**).

Lagrangian function – equality constraints

Theorem 3.

ightharpoonup If (x^*, Λ^*) is a stationary point to $L(x, \Lambda)$:

1.
$$\frac{\partial L(x,\Lambda)}{\partial \lambda_i} = 0, i = 1..m$$

2.
$$\frac{\partial L(x,\Lambda)}{\partial x_j} = 0, j = 1..n$$

3. Each $g_i(x)$ is linear <u>And</u> f(x) is a convex function,

then x^* is a local minimum of f(x) on $\{g(x) = b\}$

Example 2

$$\min f(x_1, x_2, x_3) = x_1^2 - 2x_1 + x_2^2 - x_3^2 + 4x_3$$
s.t.
$$x_1 - x_2 + 2x_3 = 2$$

- a) Write the Lagrangian function for this problem.
- b) Use the Lagrangian to find local minimiser(s) for the given problem

Example 2

$$\min f(x_1, x_2, x_3) = x_1^2 - 2x_1 + x_2^2 - x_3^2 + 4x_3$$
s.t.
$$x_1 - x_2 + 2x_3 = 2$$

$$\triangleright \nabla L(x_1, x_2, x_3, \lambda) = \Longrightarrow$$

Example 3*

$$\min f(x_1, x_2, x_3) = 3x_1^2 - \frac{1}{2}x_2^2 - \frac{1}{2}x_3^2 + x_1x_2 - x_1x_3 + 2x_2x_3$$
s.t.
$$2x_1 - x_2 + x_3 = 2$$

- a) Write the Lagrangian function for this problem.
- b) Use the Lagrangian to find local minimiser(s) for the given problem

from Linear and Non-Linear Programming by S.G.Nash and A.Sofer

Example 3

$$\min f(x_1, x_2, x_3) = 3x_1^2 - \frac{1}{2}x_2^2 - \frac{1}{2}x_3^2 + x_1x_2 - x_1x_3 + 2x_2x_3$$
s.t.
$$2x_1 - x_2 + x_3 = 2$$

$$\geqslant \nabla L(x_1, x_2, x_3, \lambda) = \implies$$