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Introduction

> Let f(x)is be nonlinear function of vector x = (xq, x5, ..., x,,) defined over the domain

D < R™. Consider an NLP problem
minz = f(x)
s.t. Ax = b,

where A is m X n matrix, rank A = m

» Assume that f(x) has continuous second-order partial derivatives for each point x =

(Xl,xz, ...,xn) inD =
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Preliminaries

» Null space of A,,,x, n =m S

N(4) = {p: Ap = 0}

» Range space of A4,,,«n

R(A) ={qgeR™q=ATA, A € R™}

> N(A) and R(AT) are orthogonal subspaces: for g € R(A) and p € N(4) :
q'p=AAp=0

> Anyx eR" x=p+gq
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Reduced function

Example:
> min f(xq,x,) =x% + x%

S.t.3x; +2x, =6
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Reduced function

In general form:  Ax =1b

» Choose xg , then x =
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Reduced function

» Reduced cost function is

> The matrix Z is of the null space of A,,x,

Null-space basis matrix for A,,,«, iIsthe n X (n —m) matrix Z:

> In other words, if Ax = b, then any feasible point x = x + p, where p € N(4)

» Hence Zx, and —Zx, are all possible feasible directions for an arbitrary x,,.
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Reduced function

Example:
> min f(xq, Xy, X3) =x7 + 4xx3 + x2

s.t. 2x1 + x,+4x3=5
3x1+ x, —x3=1

» The feasible set is
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Reduced function

Example:
> min f(xq, Xy, X3) =x7 + 4xx3 + x2

s.t. 2x1 + x,+4x3=5
3x1+ x, —x3=1

» OR
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Optimality conditions
» Unconstrained NLP problem with a reduced function:

min ¢ (xy)

where ¢(xy) = f(

» To set optimality conditions find
1. Reduced gradient V ¢(xy) =

2. Reduced Hessian V2¢(xy) =
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Optimality conditions

Theorem 1. (Second-order necessary conditions — Linear equality constraints)

> If x* a local minimiser of f(x) over the set {x : Ax = b}, and Z is a basis

matrix for the null-space of 4, then
i ZTVf(x*) = 0,and

i ZTV2f(x*)Z is positive semidefinite.

Note: the theorem comes directly by applying Taylor’s theorem on feasible directions
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Optimality conditions

Vf(x)is to N(A) \
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Optimality conditions

Theorem 2. (Second-order sufficient conditions — Linear equality constraints)
» If Z is a basis matrix for the null-space of 4 and the point x* satisfies

L. Ax"=0b
i Z'Wf(x*) = 0,and
i, ZTV2f(x*)Z is positive-definite.

then x* a local minimiser of f(x) over the set {x : Ax = b}.

Observe that given a point x for a considered linear-equality constrained NLP problem we can apply directly the above two
theorems without deriving a reduced function.
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Optimality conditions - example

> min f(xqy,xy,x3) =xf — 2x; + x5 — x5 + 4x5

S.L X1 — Xo+2x3= 2
> Vf(x) T J V2f (x) T J
> Xy = Xp = N = =
B™IN
7 z= ( I ) a
> ZTVf(x) =
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Optimality conditions - example

» Solve the resultant system of equations:

> x' = Check second order condition (iii) for x*:

ZTv2f(x*)Z =

with eigenvalues:
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Lagrangian function — preliminaries

» Let x* a local minimiser of f(x) over the set {x : Ax = b}, and Z is a basis

matrix for the null-space of A. Then Vf(x*) = Zv* + ATA*. Hence

Vi(x®) =

where A = (44, ..., 4,,) IS a vector of Lagrangian multipliers
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Lagrangian function — equality constraints

» Consider an NLP problem
minz = f(x)

s.t. g;i(x)=b;,i=1..m (**)
» Introduce the Lagrangian function with Lagrangian multipliers A = (14, ..., 4)

L(x,A) =
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Lagrangian function — equality constraints
» Assume that (x*,A*) minimazes L(x,A). Then at (x*, A")

OL(x,A)
oA

=0,i=1..m

Hence x* does/does not satisfy (**).

To show that x* is optimal , consider any feasible x':

Summary: If (x*,A*) minimazes L(x,A), then x*is
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Example 1
Consider the NLP problem:

> min f(xq,x, ) =x% + 2x5
st xt+x3=1

a) Write the Lagrangian function for this problem.

b) Use the Lagrangian to find local minimiser(s) for the given problem

FUTS



Example 1
Consider the NLP problem:

> min f(xq,x, ) =x% + 2x5
st xF+x5=1

> L(xl,xZ,A) -

» VL(xy,x,A) = = @ —
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Lagrangian function — equality constraints

» The first-order optimality condition for unconstrained NLP requires that

VL(X, A) = l.e. VAL(x, A) = and VxL(X, A) — (***)
V.L(x,A) = S Vflx) =
> Any point (x',A") satisfying (***)isas................. point for L(x,A) and a

feasible point for (**).
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Lagrangian function — equality constraints
Theorem 3.

> If (x*,A") is a stationary pointto L(x,A) :

OL(x,A)
1. o7, =0,i=1..m
2 Ll _ i1 p
axj

3. Each g;(x) is linear And f(x) is a convex function,

then x* is a local minimum of f(x) on {g(x) = b}
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Example 2
Consider the NLP problem:

> min f(xqg,xy,x3) =x% — 2x; + x5 — x% + 4x3

s.t. X1 — Xp+2x3= 2
a) Write the Lagrangian function for this problem.

b) Use the Lagrangian to find local minimiser(s) for the given problem
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Example 2
Consider the NLP problem:

> min f(xqg,xy,x3) =x% — 2x; + x5 — x% + 4x3

s.t. X1 — Xp+2x3= 2
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Example 3*
Consider the NLP problem:

. 1 1
> min f(xq, Xy, x3) = 3x% — Ex% — Ex% + XXy — X1 X3 + 2X,X3

s.t. 2X1 — Xo+Xx3=2
a) Write the Lagrangian function for this problem.

b) Use the Lagrangian to find local minimiser(s) for the given problem

from Linear and Non-Linear Programming by S.G.Nash and A.Sofer
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Example 3
Consider the NLP problem:

. 1 1
> min f(xq, Xy, x3) = 3x% — Ex% — Ex% + XXy — X1 X3 + 2X,X3

s.t. 2X1 — Xo+Xx3=2

gum—

» V L(xq,%9,x3,1) = =S
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