

Introduction to Optimisation:

Constrained Nonlinear Programming

Lecture 9

Lecture notes by Dr. Julia Memar and Dr. Hanyu Gu and with an acknowledgement to Dr.FJ Hwang and Dr.Van Ha Do

Introduction

Let f(x) is be nonlinear function of vector $\mathbf{x} = (x_1, x_2, ..., x_n)$ defined over the domain $D \subseteq \mathbb{R}^n$. Consider an NLP problem

$$\min z = f(x)$$
s.t. $Ax = b$,

where A is $m \times n$ matrix, rank A = m

Assume that f(x) has continuous second-order partial derivatives for each point $x = (x_1, x_2, ..., x_n)$ in $D = \begin{cases} x : A x = 6 \end{cases}$

Introduction decreases Improving direction and Feasible direction: $S = \{ \mathbf{x} : h(\mathbf{x}) = 0 \}$ rearible \ constraints Directional Derivative $\nabla f(A)$ $\mathcal{D}_{\mathbf{v}}(\mathbf{x}) = \nabla f(\mathbf{x}) \cdot \mathbf{v} =$ Tunit rector in v $= |\nabla f(x)| \cos \theta$ if 90° < 0 < 180° - obtuse Then $\cos\theta < 0$

of decrease of f(x)

contours of the objective function

 $\mathbf{\nabla} h(\bar{\mathbf{x}})$

Preliminaries

ightharpoonup Null space of $A_{m \times n}$, $n \ge m$ is

$$N(A) = \{p: Ap = 0\}$$

 \triangleright Range space of $A_{m \times n}$

$$R(A) = \{ q \in \mathbb{R}^n : q = A^T \Lambda, \Lambda \in \mathbb{R}^m \}$$

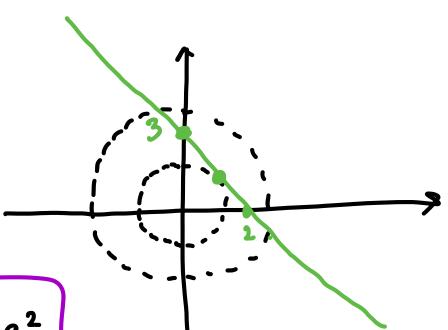
 \triangleright N(A) and $R(A^T)$ are orthogonal subspaces: for $q \in R(A)$ and $p \in N(A)$:

$$q^T p = \Lambda A p = 0$$

 \triangleright Any $x \in \Re^n$: x = p + q

Example:

$$\min f(x_1, x_2) = x_1^2 + x_2^2$$
s.t. $3x_1 + 2x_2 = 6$



$$f(x_1 x_2) = x_1^2 + x_2^2 = C^2$$

contour lines are circles

$$3x_1 + 2x_2 = 6 \rightarrow$$

•
$$x_2 = 3 - \frac{3}{2} x_1$$

$$\begin{aligned}
& P(x_1) = x_1^2 + (3 - \frac{3}{2}x_1)^2 \rightarrow \text{find min } P(x_1) \\
& \text{Find where } P' = 0 \\
& P'(x_1) = 2x_1 + 2(3 - \frac{3}{2}x_1) \times (-\frac{3}{2}) = 0. \\
& 2x_1 - q + \frac{q}{2}x_1 = 0. \quad \times 2
\end{aligned}$$

$$\begin{aligned}
& 4x_1 - 18 + qx_1 = 0 \\
& 13x_1 = 18 \\
& x_1 = \frac{18}{13} \rightarrow x_2 = 3 - \frac{3}{2} \times \frac{18}{13} = \frac{12}{13}
\end{aligned}$$

$$x_1 = \frac{18}{13} \text{ is min as } \frac{\min_{x \in \mathbb{R}^3} P'(x_1)}{\frac{1}{13}}$$

$$x_1 = \frac{18}{13} \text{ is min as } \frac{\min_{x \in \mathbb{R}^3} P'(x_1)}{\frac{1}{13}}$$

$$x_1 = \frac{18}{13} \text{ is min as } \frac{\min_{x \in \mathbb{R}^3} P'(x_1)}{\frac{1}{13}}$$

$$x_2 = \frac{18}{13} \text{ is min as } \frac{\min_{x \in \mathbb{R}^3} P'(x_1)}{\frac{1}{13}}$$

$$x_3 = \frac{18}{13} \text{ is min as } \frac{18}{12} = \frac{12}{13}$$

$$x_4 = \frac{18}{13} \frac{12}{13}$$

In general form:
$$Ax = b$$

$$\text{Choose } x_B \text{, then } x = \begin{pmatrix} x_B \\ x_N \end{pmatrix} \rightarrow Ax = \langle +(B|N) \begin{pmatrix} x_B \\ x_N \end{pmatrix} = Bx_B + Nx_N = 6$$

$$x_B = B^T \delta - B^T Nx_N$$

Reduced cost function is

P(
$$x_N$$
) = $f(\bar{x} + 2x_N)$
instead of solving min $f(x)$
s.t. $Ax = 6$

also reduced

Solve

 \triangleright The matrix Z is basis matrix

of the null space of $A_{m \times n}$

Null-space basis matrix for $A_{m \times n}$ is the $n \times (n-m)$ matrix Z:

Particular s-N

T

- In other words, if $A\bar{x} = b$, then any feasible point $x = \bar{x} + p$, where $p \in N(A)$
- Hence Zx_n and $-Zx_n$ are all possible feasible directions for an arbitrary x_n .

Example:

$$\min f(x_1, x_2, x_3) = x_1^2 + 4x_1x_3 + x_2^2$$
s.t.
$$2x_1 + x_2 + 4x_3 = 5$$

$$3x_1 + x_2 - x_3 = 1$$

> The feasible set is all x satisfying (*)

$$A = \begin{pmatrix} 2 & 1 & 4 \\ 3 & 1 & -1 \end{pmatrix} \quad b = \begin{pmatrix} 5 \\ 1 \end{pmatrix}$$

we are going to constructed reduced function, and kence solve the problem:

$$|x_{B}| = 2$$

$$x_{B} = (x_{1}, x_{2}); \quad x_{N} = x_{3}$$

$$B = \begin{pmatrix} 2 & 1 \\ 3 & 1 \end{pmatrix}; \quad B^{-1} = -\begin{pmatrix} 1 & -1 \\ -3 & 2 \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 3 & -2 \end{pmatrix}$$

$$N = \begin{pmatrix} 4 \\ -1 \end{pmatrix};$$

$$B^{-1}N = \begin{pmatrix} -1 & 1 \\ 3 & -2 \end{pmatrix} \begin{pmatrix} 4 \\ -1 \end{pmatrix} = \begin{pmatrix} -S \\ 14 \end{pmatrix};$$

$$D^{-1}N = \begin{pmatrix} -1 & 1 \\ 3 & -2 \end{pmatrix} \begin{pmatrix} S \\ 1 \end{pmatrix} = \begin{pmatrix} -4 \\ 13 \end{pmatrix};$$

$$x_{3} = \begin{pmatrix} -4 \\ -N \end{pmatrix};$$

$$x_{3} = \begin{pmatrix} -1 & 1 \\ 3 & -2 \end{pmatrix} \begin{pmatrix} S \\ 1 \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 13 \end{pmatrix};$$

$$x_{4} = \begin{pmatrix} -1 & 1 \\ 3 & -2 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 13 \end{pmatrix};$$

$$x_{5} = \begin{pmatrix} -1 & 1 \\ 13 \end{pmatrix};$$

$$x_{1} = -4 + 5x_{3};$$

$$x_{2} = 13 - 14x_{3};$$

$$x_{3} = \begin{pmatrix} -4 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{1} = -4 + 5x_{3};$$

$$x_{2} = 13 - 14x_{3};$$

$$x_{3} = \begin{pmatrix} -4 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{1} = -4 + 5x_{3};$$

$$x_{2} = 13 - 14x_{3};$$

$$x_{3} = \begin{pmatrix} -4 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{4} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{5} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{1} = -4 + 5x_{3};$$

$$x_{2} = 13 - 14x_{3};$$

$$x_{3} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{4} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{5} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{1} = -4 + 5x_{3};$$

$$x_{2} = 13 - 14x_{3};$$

$$x_{3} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{4} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{5} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{5} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{7} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{1} = -4 + 5x_{3};$$

$$x_{2} = 13 - 14x_{3};$$

$$x_{3} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{1} = -4 + 5x_{3};$$

$$x_{2} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{3} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{4} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{5} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{7} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{1} = -4 + 5x_{3};$$

$$x_{2} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{3} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{1} = -4 + 5x_{3};$$

$$x_{2} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{3} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{4} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{5} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{5} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{7} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{7} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{7} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{7} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{7} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{7} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{7} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{7} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{7} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{7} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{7} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{7} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{7} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{7} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{7} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{7} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{7} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{7} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{7} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{7} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$x_{7} = \begin{pmatrix} -1 \\ 13 \\ 0 \end{pmatrix};$$

$$\Phi'(x_3) = 2(-4+5x_3)*5 - 16 + 40x_3 + 2(13-14x_3)*(-14)$$

$$= -40 + 50x_3 - 16 + 40x_3 - 364 + 392x_3 =$$

$$= -420 + 482x_3$$

$$\Phi' = 0 \quad \text{when} \quad x_3 = \frac{420}{482}$$

Hence minimiser of
$$f(x_1, x_2, x_3)$$
 is
$$x = \begin{pmatrix} -4+5 & \frac{420}{482} \\ 13 - 14 & \frac{420}{482} \\ \frac{420}{482} \end{pmatrix}$$

Example:

>
$$\min f(x_1, x_2, x_3) = x_1^2 + 4x_1x_3 + x_2^2$$

s.t. $2x_1 + x_2 + 4x_3 = 5$
 $3x_1 + x_2 - x_3 = 1$ (A16) ~ (I | A'6)
> OR use Gaussan - Jordan reduction

$$\begin{pmatrix} 2 & 1 & 4 & 5 \\ 3 & 1 & -1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & \frac{1}{2} & 2 & \frac{5}{2} \\ 0 & -\frac{1}{2} & -7 & -\frac{13}{2} \end{pmatrix} \sim \begin{pmatrix} 1 & \frac{1}{2} & 2 & \frac{1}{2} \\ 0 & -\frac{1}{2} & -7 & -\frac{13}{2} \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -5 & -4 \\ 0 & 1 & 14 & 13 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -5 & -4 \\ 0 & 1 & 14 & 13 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -5 & -4 \\ 0 & 1 & 14 & 13 \end{pmatrix} \sim \begin{pmatrix} 1 & 14 & 13 \\ 0 & 1 & 14 & 13 \end{pmatrix} \sim \begin{pmatrix} 1 & 14 & 13 \\ 0 & 1 & 14 & 13 \end{pmatrix} \sim \begin{pmatrix} 1 & 14 & 14 \\ 0 & 1 & 14 & 13 \end{pmatrix} \sim \begin{pmatrix} 1 & 14 & 14 \\ 0 & 1 & 14 & 13 \end{pmatrix} \sim \begin{pmatrix} 1 & 14 & 14 \\ 0 & 1 & 14 & 14 \end{pmatrix} \sim \begin{pmatrix} 1 & 14 & 14 \\ 13 & 14 & 14 \end{pmatrix} \sim \begin{pmatrix} 1 & 14 & 14 \\ 13 & 14 & 14 \end{pmatrix} \sim \begin{pmatrix} 1 & 14 & 14 \\ 13 & 14 & 14 \end{pmatrix} \sim \begin{pmatrix} 1 & 14 & 14 \\ 13 & 14 & 14 \end{pmatrix} \sim \begin{pmatrix} 1 & 14 & 14 \\ 14 & 14 \end{pmatrix} \sim$$

by Th. 6, if in x^{\dagger} $\nabla f = 0$ and $\nabla^2 f$ is pos-def \Rightarrow a reduced function:

Unconstrained NLP problem with a reduced function:

$$\min \phi(x_N)$$

where
$$\phi(x_N) = f(\mathbf{x} + \mathbf{z}_N)$$

> To set optimality conditions find

1. Reduced gradient
$$\nabla \phi(x_N) = 2^T \nabla f(x_N)$$
 gradient of reduced $f-n$

2. Reduced Hessian $\nabla^2 \phi(x_N) = \mathbf{Z}^T \nabla^2 \mathbf{f}(\mathbf{x}_N) \mathbf{z}$ Hessian of reduced $\mathbf{f} - \mathbf{n}$

Theorem 1 - constrained

Optimality conditions

Theorem 1. (Second-order necessary conditions – Linear equality constraints)

- If x^* a local minimiser of f(x) over the set $\{x : Ax = b\}$, and Z is a basis matrix for the null-space of A, then
 - i. $Z^T \nabla f(x^*) = 0$, and
 - ii. $Z^T \nabla^2 f(x^*) Z$ is positive semidefinite.

Optimality conditions or two senses to N(A) or two senses to N(A) $\nabla f(\bar{\mathbf{x}})$

Optimality conditions

Theorem 2. (Second-order sufficient conditions – Linear equality constraints)

 \triangleright If Z is a basis matrix for the null-space of A and the point x^* satisfies

i.
$$Ax^* = b \rightarrow x^*$$
 is fearible

- ii. $Z^T \nabla f(x^*) = 0$, and
- iii. $Z^T \nabla^2 f(x^*) Z$ is positive-definite.

then x^* a local minimiser of f(x) over the set $\{x : Ax = b\}$.

Observe that given a point x for a considered linear-equality constrained NLP problem we can apply directly the above two theorems without deriving a reduced function.

If
$$B = 2$$
; $B' = \frac{1}{2}$

Optimality conditions - example

$$\min f(x_1, x_2, x_3) = x_1^2 - 2x_1 + x_2^2 - x_3^2 + 4x_3$$
s.t.
$$x_1 - x_2 + 2x_3 = 2$$
 A = (1 - 1 2)

$$\forall f(x) = \begin{pmatrix} 2\pi_1 - 2 \\ 2\pi_2 \\ -2\pi_3 + 4 \\ 2\pi_3 \end{pmatrix} \quad \forall f(x) = \begin{pmatrix} 2\pi_1 - 2 \\ 0 & 2 & 0 \\ 0 & 0 & -2 \\ 0 & 0 & -2 \end{pmatrix}$$

$$\Rightarrow Z = \begin{pmatrix} B^{-1}N \\ I \end{pmatrix} = \begin{pmatrix} I - 2 \\ 0 & 0 \\ 0 & I \end{pmatrix}$$

$$Z = \begin{pmatrix} B^{-1}N \\ I \end{pmatrix} = \begin{pmatrix} I - 2 \\ 0 & I \end{pmatrix}$$

$$\Rightarrow Z^T \nabla f(x) = \begin{pmatrix} I & I & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} 2\pi_1 - 2 \\ 2\pi_2 \\ -2\pi_3 + 4 \end{pmatrix} = \begin{pmatrix} 2\pi_1 - 2 + 2\pi_2 \\ -4\pi_1 + 4 - 2\pi_2 + 4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
Reduced

gradient

$$\begin{cases} 2x_1 + 2x_2 = 2 + 2 \\ 2x_1 - 2x_2 = 0 \\ -4x_1 + 4 \cdot 2x_3 + 4 = 0 \end{cases} = 0.$$

$$-4x_1 - 2x_3 = -8 + (2)$$

$$x_1 - x_2 + 2x_3 = 2 \quad \text{Feas.} \quad Ax = 6$$

add the constraint as another eq-n

$$\begin{pmatrix} 1 & 1 & 0 & | & 1 \\ 2 & 0 & 1 & | & 4 \\ 1 & -1 & 2 & | & 2 \end{pmatrix} \xrightarrow{-2R_1} \begin{pmatrix} 1 & 1 & 0 & | & 1 \\ 0 & -2 & 1 & | & 2 \\ 0 & -2 & 2 & | & 1 \end{pmatrix} \xrightarrow{\sim} \div (-2)$$

$$\chi^{\#} = \begin{pmatrix} \frac{5}{2} \\ -\frac{3}{2} \\ -1 \end{pmatrix}$$
 the only point where $\chi^{\#} = \begin{pmatrix} \frac{5}{2} \\ -\frac{3}{2} \end{pmatrix}$ and $\chi^{\#} = \chi^{\#}$

Now find
$$2^{T} \nabla^{2} f = \begin{pmatrix} 1 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 1 & 0 \\ 6 & 1 \end{pmatrix} = \begin{pmatrix} 2^{T} & 1 & 2 \\ 1 & 0 & 1 \\ 0 & 0 & -2 \end{pmatrix}$$

$$= \begin{pmatrix} 2 & 2 & 0 \\ -4 & 0 & -2 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 4 & -4 \\ -4 & 6 \end{pmatrix} = 2^{T} \nabla^{2} \int (x^{*}) Z$$

Optimality conditions - example

Solve the resultant system of equations:

Hence $z^T \nabla^2 f(x^*) \geq is pos. - def \rightarrow x^*$ is local min of f(x)s.t. Ax = 6.

Lagrangian function – preliminaries

Let x^* a local minimiser of f(x) over the set $\{x: Ax = b\}$, and Z is a basis matrix for the null-space of A. Then $\nabla f(x^*) = Zv^* + A^T\Lambda^*$. Hence

$$\nabla f(x^*) = P^* + q^* = 2v^* + A^T L^*$$
as N(A) and R(A) are orthogonal spaces
at min of $f(x)$ $x^* = 2^T \nabla f(x^*) = 0 \Rightarrow$
Hence $2^T \nabla f(x^*) = 2^T 2 v^* + 2^T A^T L^* = 0$.
$$2^T 2 v^* = 0$$

$$v^* = 0$$

Lagrangian function – equality constraints

Consider an NLP problem

$$\min z = f(x)$$
s.t. $g_i(x) = b_i, i = 1..m$

$$\mathbf{A} \mathbf{x} = \mathbf{6} \quad \text{if constraints}$$

 \triangleright Introduce the Lagrangian function with Lagrangian multipliers $\Lambda = (\lambda_1, ..., \lambda_m)$

$$L(x,\Lambda) = f(x) + \lambda^{T}(\beta - Ax) =$$

$$= f(x) + \sum_{i=1}^{m} \lambda_{i}(\beta_{i} - \beta_{i}(x))$$

$$L(x, \lambda) = f(x) + \sum_{i=1}^{m} \lambda_i (\ell_i - g_i(x))$$
Lagrangian function – equality con:

Assume that (x^*, Λ^*) minimazes $L(x, \Lambda)$. Then at (x^*, Λ^*)

$$\frac{2L(x, \lambda)}{2\lambda_i} = \ell_i - g_i(x)$$

$$\frac{2L(x,\lambda)}{2\lambda_i}=b_i-g_i(x)$$

$$\frac{\partial L(x,\Lambda)}{\partial \lambda_i} = \qquad \qquad \xi_i - g_i(x^*) \qquad \qquad = 0, i = 1..m$$

Hence x^* does does not satisfy (**). $\rightarrow x^*$ is fearible for original problem

To show that x^* is optimal, consider any feasible x' for original problem)

as x' is fearible

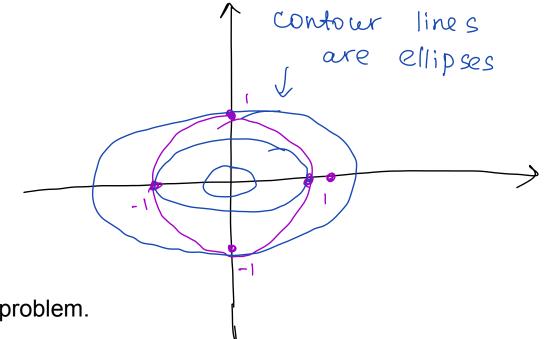
Summary: If
$$(x^*, \Lambda^*)$$
 minimazes $L(x, \Lambda)$, then x^* is local min of constrained NLP min $f(x)$

$$\frac{s.t.}{hx = b}$$

Example 1

Consider the NLP problem:

$$\min f(x_1, x_2) = x_1^2 + 2x_2^2$$
s.t. $x_1^2 + x_2^2 = 1$



- a) Write the Lagrangian function for this problem.
- b) Use the Lagrangian to find local minimiser(s) for the given problem

Example 1

Consider the NLP problem:

$$\min f(x_{1}, x_{2}) = x_{1}^{2} + 2x_{2}^{2}$$

$$s.t. \ x_{1}^{2} + x_{2}^{2} = 1$$

$$\geq L(x_{1}, x_{2}, \lambda) = f(x) + \sum_{i} \lambda_{i} \left(\theta_{i} - g_{i}(x) \right) = x_{1}^{2} + 2x_{2}^{2} + \lambda \left(1 - x_{1}^{2} - x_{2}^{2} \right)$$

$$\Rightarrow \nabla L(x_{1}, x_{2}, \lambda) = 0 \Rightarrow x_{2}$$

$$\Rightarrow \Delta_{2}$$

Hence $x = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $x = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$ are local minimisers of $f(x_1, x_2)$ on $\begin{cases} x_1^2 + x_2^2 = 1 \end{cases}$

Lagrangian function – equality constraints

> The first-order optimality condition for unconstrained NLP requires that

$$\nabla L(x,\Lambda) = 0$$
 i. e. $\nabla_{\Lambda} L(x,\Lambda) = \mathbf{6} - \mathbf{A} \mathbf{x}$ and $\nabla_{X} L(x,\Lambda) = (***)$

$$= 0 \qquad = \nabla f(\mathbf{x}) - \mathbf{A}^{\mathsf{T}} \lambda = 0$$

$$\nabla f(\mathbf{x}) = \mathbf{A}^{\mathsf{T}} \lambda \cdot \mathbf{A}^{\mathsf{T}} \lambda = 0$$

- Any point (x', Λ') satisfying (***) is a stationary fint for $L(x, \Lambda)$ and a feasible point for (**).
 - · Statitionary point of L(x, λ) (x*, λ*): x* is feasible for constrained opt. problem (**)

Lagrangian function – equality constraints

Theorem 3. - constrained

ightharpoonup If (x^*, Λ^*) is a stationary point to $L(x, \Lambda)$:

$$1. \bullet \frac{\partial L(x,\Lambda)}{\partial \lambda_i} = 0, i = 1..m \rightarrow \text{Feasibility of } \mathbf{x}^{\mathsf{T}}$$

$$2. \bullet \frac{\partial L(x, \Lambda)}{\partial x_j} = 0, j = 1...n \rightarrow \nabla f(x^*) = A^T \Lambda^* \rightarrow Z^T \nabla f(x^*) = 0$$

3. Each $g_i(x)$ is linear <u>And</u> f(x) is a convex function,

then x^* is a local minimum of f(x) on $\{g(x) = b\}$

if
$$f(x)$$
 is not convex, then

theck if $Z^T \nabla^2 f(x^*) Z$ is

pos. - obt

Example 2

Consider the NLP problem:

$$\min f(x_1, x_2, x_3) = x_1^2 - 2x_1 + x_2^2 - x_3^2 + 4x_3$$
s.t.
$$x_1 - x_2 + 2x_3 = 2$$

- a) Write the Lagrangian function for this problem.
- b) Use the Lagrangian to find local minimiser(s) for the given problem

Example 2

Consider the NLP problem:

$$\min f(x_1, x_2, x_3) = x_1^2 - 2x_1 + x_2^2 - x_3^2 + 4x_3$$
s.t. $x_1 - x_2 + 2x_3 = 2$

$$L\left(x_1, x_2, x_3, \lambda\right) = :x_1^2 - 2x_1 + x_2^2 - x_3^2 + 4x_3 + \lambda\left(2 - x_1 + x_2 - 2x_3\right)$$
1. Find Stationary Point of L
$$Pvint of L$$

$$Pvint of L$$

$$Pvint of L$$

$$Pvint of L$$

$$Tuldet x_1, x_2, x_3, \lambda = 0 \Rightarrow -2x_3 - 2\lambda = -4$$

$$Tuldet x_2 + \lambda = 0 \Rightarrow -2x_3 - 2\lambda = -4$$

$$Tuldet x_3 + 4 - 2\lambda = 0 \Rightarrow -2x_3 - 2\lambda = -4$$

$$Tuldet x_3 + 4 - 2\lambda = 0 \Rightarrow -2x_3 - 2\lambda = -4$$

$$Tuldet x_3 + 4 - 2\lambda = 0 \Rightarrow -2x_3 - 2\lambda = -4$$

$$Tuldet x_3 + 4 - 2\lambda = 0 \Rightarrow -2x_3 - 2\lambda = -4$$

$$Tuldet x_3 + 4 - 2\lambda = 0 \Rightarrow -2x_3 - 2\lambda = -4$$

$$Tuldet x_3 + 4 - 2\lambda = 0 \Rightarrow -2x_3 - 2\lambda = -4$$

$$Tuldet x_3 + 4 - 2\lambda = 0 \Rightarrow -2x_3 - 2\lambda = -4$$

$$Tuldet x_3 + 4 - 2\lambda = 0 \Rightarrow -2x_3 - 2\lambda = -4$$

$$Tuldet x_3 + 4 - 2\lambda = 0 \Rightarrow -2x_3 - 2\lambda = -4$$

$$Tuldet x_3 + 4 - 2\lambda = 0 \Rightarrow -2x_3 - 2\lambda = -4$$

$$Tuldet x_3 + 4 - 2\lambda = 0 \Rightarrow -2x_3 - 2\lambda = -4$$

$$Tuldet x_3 + 4 - 2\lambda = 0 \Rightarrow -2x_3 - 2\lambda = -4$$

$$Tuldet x_3 + 4 - 2\lambda = 0 \Rightarrow -2x_3 - 2\lambda = -4$$

$$Tuldet x_3 + 2x_3 + 2x_3 = 0$$

Assume we found $(x^*, \lambda^*) \rightarrow stationary$ point of $L(x, \lambda)$.

Chech condition 3 of Th. 3-constr. $g(x) = B \rightarrow linear$ $g(x) \rightarrow x_1 - x_2 + 2x_3 = 2$

$$\nabla f(x) = \begin{pmatrix} 2x_1 - 2 \\ 2x_2 \\ -2x_3 + 4 \end{pmatrix} \quad ; \quad \nabla^2 f(x) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

pos.-def for all $x \in \mathbb{R}^n$ f(x) is strictly convex x^* is local min on $\{x: ax-b=0\}$

Example 3*

in tutorial

Consider the NLP problem:

$$\min f(x_1, x_2, x_3) = 3x_1^2 - \frac{1}{2}x_2^2 - \frac{1}{2}x_3^2 + x_1x_2 - x_1x_3 + 2x_2x_3$$
s.t.
$$2x_1 - x_2 + x_3 = 2$$

- a) Write the Lagrangian function for this problem.
- b) Use the Lagrangian to find local minimiser(s) for the given problem

Example 3

Consider the NLP problem:

$$\min f(x_1, x_2, x_3) = 3x_1^2 - \frac{1}{2}x_2^2 - \frac{1}{2}x_3^2 + x_1x_2 - x_1x_3 + 2x_2x_3$$
s.t.
$$2x_1 - x_2 + x_3 = 2$$

$$\geqslant \nabla L(x_1, x_2, x_3, \lambda) = \Longrightarrow$$