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Introduction
➢ Let 𝑓(𝑥) is be  nonlinear function of vector 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) defined over the domain 

𝐷 ⊆ 𝑅𝑛. Consider an NLP problem

min 𝑧 = 𝑓(𝑥)

s.t. 𝐴𝑥 = 𝑏,

where 𝐴 is 𝑚 × 𝑛 matrix, 𝑟𝑎𝑛𝑘 𝐴 = 𝑚

➢ Assume that 𝑓(𝑥) has continuous second-order partial derivatives for each point 𝑥 =

(𝑥1, 𝑥2, … , 𝑥𝑛) in 𝐷 = x Ax 6
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Preliminaries
➢ Null space of 𝐴𝑚×𝑛, 𝑛 ≥ 𝑚 is 

𝑁 𝐴 = {𝑝: 𝐴𝑝 = 0}

➢ Range space of 𝐴𝑚×𝑛

𝑅 𝐴 = {𝑞 ∈ ℜ𝑛: 𝑞 = 𝐴𝑇Λ, Λ ∈ ℜ𝑚}

➢ 𝑁 𝐴 and 𝑅 𝐴𝑇 are orthogonal subspaces: for 𝑞 ∈ 𝑅 𝐴 and 𝑝 ∈ 𝑁 𝐴 :

𝑞𝑇𝑝 = Λ𝐴𝑝 = 0

➢ Any 𝑥 ∈ ℜ𝑛: 𝑥 = 𝑝 + 𝑞

f a project at



Reduced function
Example: 

➢ min𝑓 𝑥1, 𝑥2 = 𝑥12 + 𝑥22

s.t. 3𝑥1 + 2𝑥2 = 6
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Reduced function
In general form:  𝐴𝑥 = 𝑏

➢ Choose 𝑥𝐵 , then  𝑥 =

➢ 𝑥 = (particular and homogeneous solutions)
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Reduced function
➢ Reduced cost function is 

➢ The matrix 𝑍 is                                               of  the null space of 𝐴𝑚×𝑛

Null-space basis matrix for 𝐴𝑚×𝑛 is the 𝑛 × 𝑛 −𝑚 matrix 𝑍:

➢ In other words, if A ҧ𝑥 = 𝑏, then any feasible point 𝑥 = ҧ𝑥 + 𝑝, where 𝑝 ∈ 𝑁 𝐴

➢ Hence 𝑍𝑥𝑛 and −𝑍𝑥𝑛 are all possible feasible directions for an arbitrary 𝑥𝑛.
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Reduced function
Example: 

➢ min𝑓 𝑥1, 𝑥2, 𝑥3 = 𝑥12 + 4𝑥1𝑥3 + 𝑥22

s.t. 2𝑥1 + 𝑥2+4𝑥3= 5
3𝑥1 + 𝑥2 − 𝑥3 = 1

➢ The feasible set is all x satisfying

A 1 1
we are going to constructed reduced
function and Hence solve the problem
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Reduced function
Example: 

➢ min𝑓 𝑥1, 𝑥2, 𝑥3 = 𝑥12 + 4𝑥1𝑥3 + 𝑥22

s.t. 2𝑥1 + 𝑥2+4𝑥3= 5
3𝑥1 + 𝑥2 − 𝑥3 = 1
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Optimality conditions
➢ Unconstrained NLP problem with a reduced function:

min𝜙(𝑥𝑁)

where 𝜙 𝑥𝑁 = 𝑓(

➢ To set optimality conditions find

1. Reduced gradient 𝛻 𝜙 𝑥𝑁 =

2. Reduced Hessian 𝛻2𝜙 𝑥𝑁 =

by Th 6 if in 21
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Optimality conditions
Theorem 1. (Second-order necessary conditions – Linear equality constraints) 

➢ If 𝑥∗ a local minimiser of 𝑓(𝑥) over the set {𝑥 ∶ 𝐴𝑥 = 𝑏}, and 𝑍 is a basis 

matrix for the null-space of 𝐴, then 

i. 𝑍𝑇𝛻𝑓(𝑥∗) = 0, and

ii. 𝑍𝑇𝛻2𝑓(𝑥∗)𝑍 is positive semidefinite. 

Note: the theorem comes directly by applying Taylor’s theorem on feasible directions

Theorem 1 constrained

1



𝛻𝑓( ҧ𝑥) is _________ to 𝑁(𝐴)
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Optimality conditions
Theorem 2. (Second-order sufficient conditions – Linear equality constraints)

➢ If 𝑍 is a basis matrix for the null-space of 𝐴 and the point 𝑥∗ satisfies

i. 𝐴𝑥∗ = 𝑏
ii. 𝑍𝑇𝛻𝑓(𝑥∗) = 0, and
iii. 𝑍𝑇𝛻2𝑓(𝑥∗)𝑍 is positive-definite. 

then 𝑥∗ a local minimiser of 𝑓(𝑥) over the set 𝑥 ∶ 𝐴𝑥 = 𝑏 .
Observe that given a point x for a considered linear-equality constrained NLP problem we can apply directly the above two 
theorems without deriving a reduced function.

Theorem 2 constrained

is feasible



Optimality conditions - example

➢ min𝑓 𝑥1, 𝑥2, 𝑥3 = 𝑥12 − 2𝑥1 + 𝑥22 − 𝑥32 + 4𝑥3
s.t. 𝑥1 − 𝑥2+2𝑥3= 2

➢ 𝛻𝑓 𝑥 = 𝛻2𝑓 𝑥 =

➢ 𝑥𝑁 = 𝑥𝐵 = 𝑁 = 𝐵 =

➢ 𝑍 = 𝐵−1𝑁
𝐼

=

➢ 𝑍𝑇𝛻𝑓 𝑥 = = 0
0
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Optimality conditions - example

➢ Solve the resultant system of equations:

➢ 𝑥∗ = Check second order condition (iii) for 𝑥∗:

𝑍𝑇𝛻2𝑓 𝑥∗ 𝑍 =

with eigenvalues:

solve det 729 15 0

4 X 6 X 16 0

det 0 X 101 8 0

dip e1t
10 T both are
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Lagrangian function – preliminaries
➢ Let 𝑥∗ a local minimiser of 𝑓(𝑥) over the set {𝑥 ∶ 𝐴𝑥 = 𝑏}, and 𝑍 is a basis 

matrix for the null-space of 𝐴. Then ∇𝑓 𝑥∗ = 𝑍𝑣∗ + 𝐴𝑇Λ∗. Hence 

∇𝑓 𝑥∗ =

where Λ = (𝜆1, … , 𝜆𝑚) is  a vector of Lagrangian multipliers
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Lagrangian function – equality constraints
➢ Consider an NLP problem

min 𝑧 = 𝑓(𝑥)

𝑠. 𝑡. 𝑔𝑖 𝑥 = 𝑏𝑖, 𝑖 = 1. .𝑚 (**)

➢ Introduce the Lagrangian function with Lagrangian multipliers Λ = (𝜆1,… , 𝜆𝑚)

𝐿 𝑥, Λ =

Ax 6 if lithattraints

f x It 6 Ax
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Lagrangian function – equality constraints
➢ Assume that (𝑥∗, Λ∗) minimazes 𝐿 𝑥, Λ . Then at (𝑥∗, Λ∗)

𝜕𝐿 𝑥, Λ
𝜕𝜆𝑖

= = 0, 𝑖 = 1. .𝑚

Hence 𝑥∗ does/does not satisfy  (**).

To show that  𝑥∗ is optimal , consider  any feasible 𝑥′:

Summary: If (𝑥∗, Λ∗) minimazes 𝐿 𝑥, Λ , then  𝑥∗ is ___________________________
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Example 1 
Consider the NLP problem:

➢ min𝑓 𝑥1, 𝑥2 = 𝑥12 + 2𝑥22

s.t. 𝑥12 + 𝑥22 = 1

a) Write the Lagrangian function for this problem.

b) Use the Lagrangian to find local minimiser(s) for the given problem

p
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Example 1 
Consider the NLP problem:

➢ min𝑓 𝑥1, 𝑥2 = 𝑥12 + 2𝑥22

s.t. 𝑥12 + 𝑥22 = 1

➢ 𝐿 𝑥1, 𝑥2, 𝜆 =

➢ 𝛻 𝐿 𝑥1, 𝑥2, 𝜆 = ⟹

f x Edi bi g x x 2x 1 x2

to find min x 1 if 2x 2x 1 0

to 22 4 22 2 x X 0

1 x x 0
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Lagrangian function – equality constraints
➢ The first-order optimality condition for unconstrained NLP requires that

𝛻𝐿 𝑥, Λ = 𝑖. 𝑒. 𝛻Λ𝐿 𝑥, Λ = and    𝛻𝑥𝐿 𝑥, Λ = (***)

𝛻𝑥𝐿 𝑥, Λ = ⟺ 𝛻𝑓 𝑥 =

➢ Any point (𝑥′, Λ′) satisfying (***) is a s…………….. point for 𝐿 𝑥, Λ and a 
feasible point for (**).
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Lagrangian function – equality constraints
Theorem 3. 

➢ If (𝑥∗, Λ∗) is a stationary point to 𝐿 𝑥, Λ :

1. 𝜕𝐿 𝑥,Λ
𝜕𝜆𝑖

= 0, 𝑖 = 1. .𝑚

2. 𝜕𝐿 𝑥,Λ
𝜕𝑥𝑗

= 0, 𝑗 = 1. . 𝑛

3. Each 𝑔𝑖 𝑥 is linear And f(x) is a convex function,

then 𝑥∗ is a local minimum of f(x) on  {𝑔(𝑥) = 𝑏}
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Example 2 
Consider the NLP problem:

➢ min𝑓 𝑥1, 𝑥2, 𝑥3 = 𝑥12 − 2𝑥1 + 𝑥22 − 𝑥32 + 4𝑥3

s.t. 𝑥1 − 𝑥2+2𝑥3= 2

a) Write the Lagrangian function for this problem.

b) Use the Lagrangian to find local minimiser(s) for the given problem



Example 2 
Consider the NLP problem:

➢ min𝑓 𝑥1, 𝑥2, 𝑥3 = 𝑥12 − 2𝑥1 + 𝑥22 − 𝑥32 + 4𝑥3

s.t. 𝑥1 − 𝑥2+2𝑥3= 2

➢ 𝛻 𝐿 𝑥1, 𝑥2, 𝑥3, 𝜆 = ⟹

L x.pro f3 d X 2 x 12 213
1 Find stationary 2x 2 0
point of L 2 2 1 0

0
2 3 4 21 0 2 3

2 x 12 293 0

7 12 2313 2
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Example 3* 
Consider the NLP problem:

➢ min𝑓 𝑥1, 𝑥2, 𝑥3 =3𝑥12 −
1
2
𝑥22 −

1
2
𝑥32 + 𝑥1𝑥2 − 𝑥1𝑥3 + 2𝑥2𝑥3

s.t. 2𝑥1 − 𝑥2+𝑥3= 2

a) Write the Lagrangian function for this problem.

b) Use the Lagrangian to find local minimiser(s) for the given problem

* from Linear and Non-Linear Programming by S.G.Nash and A.Sofer

in tutorial



Example 3 
Consider the NLP problem:

➢ min𝑓 𝑥1, 𝑥2, 𝑥3 =3𝑥12 −
1
2
𝑥22 −

1
2
𝑥32 + 𝑥1𝑥2 − 𝑥1𝑥3 + 2𝑥2𝑥3

s.t. 2𝑥1 − 𝑥2+𝑥3= 2

➢ 𝛻 𝐿 𝑥1, 𝑥2, 𝑥3, 𝜆 = ⟹


