37242 Introduction to Optimisation

Tutorial 4

RHS of constraints are

1. Consider the LP in standard form: $\max z = x_1 + x_2 + x_3$ $s.t. \ x_1 + 2x_2 + 3x_3$ $2x_1 + 4x_2 + x_3$ $x_1 + 3x_2 + 3x_3$ $x_1 + 3x_2 + 3x_3$ $x_1, x_2, x_3, s_1, s_2, s_3 \ge 0.$ RHS of constraints = 5 $+ s_2 = 6$ $+ s_3 = 6$ $x_1, x_2, x_3, s_1, s_2, s_3 \ge 0.$ Variables $\geqslant 0$

- (a) If the basis \mathbf{x}_B is (s_1, s_2, s_3) , what are the values for \mathbf{x}_B and \mathbf{x}_N , and what is the objective value?
- (b) If the basis \mathbf{x}_B is (x_1, x_2, x_3) , what are the values for \mathbf{x}_B and \mathbf{x}_N , and what is the objective value?
- (c) If the basis \mathbf{x}_B is (x_1, x_2, s_1) , what are the values for \mathbf{x}_B and \mathbf{x}_N . Is this a basic feasible solution (bfs)?
- 2. Solve the following LP with Simplex method in the tabular form:

3. Show that the set of all \mathbf{x} satisfying

$$\mathbf{A}\mathbf{x} \le \mathbf{b}$$
$$\mathbf{x} \ge \mathbf{0}$$

is convex. (Hint: take two arbitrary points satisfying the constraints, and consider a convex combination of these points)

1. Consider the LP in standard form. ____ constraints are

- (a) If the basis \mathbf{x}_B is (s_1, s_2, s_3) , what are the values for \mathbf{x}_B and \mathbf{x}_N , and what is the objective value?
- (b) If the basis \mathbf{x}_B is (x_1, x_2, x_3) , what are the values for \mathbf{x}_B and \mathbf{x}_N , and what is the objective value?
- (c) If the basis \mathbf{x}_B is (x_1, x_2, s_1) , what are the values for \mathbf{x}_B and \mathbf{x}_N . Is this a basic feasible solution (bfs)?

a) N of variables -
$$n = 6$$

N of constraints - $m = 3$

$$|X_B| = m = 3 \qquad |X_N| = n - m = 3$$

$$X_B = (S_1 S_2 S_3) \rightarrow X_N = (X_1 X_2 X_3)$$

$$S_1 = 5 \qquad \qquad X_1 = X_2 = X_3 = 0$$

$$S_2 = 6$$

$$S_3 = 6$$

$$Z(X_B) = 0 \qquad Z(X_B) = C_B B^{-1} B$$

$$z = x_1 + x_2 + x_3 + \emptyset s_1 + \emptyset s_2 + \emptyset s_3$$

c)
$$x_8 = (x_1 \ x_2 \ s_1)$$
 $x_8 = (x_3 \ s_2 \ s_3)$

$$B = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 0 \\ 1 & 3 & 0 \end{pmatrix}$$

$$x_8 = (x_3 \ s_2 \ s_3)$$

$$x_3 = s_2 = s_2 = 0$$

$$\chi_{B} = \begin{pmatrix} -3 \\ 3 \\ 2 \end{pmatrix} \stackrel{\text{o}}{\rightarrow} \text{ not fearible}$$

2. Solve the following LP with Simplex method in the tabular form:

$$\min z = -x_1 - 2x_2$$
s.t. $x_1 + x_2 \le 2$

$$2x_1 + x_2 \le 1$$
Standard form:

1. Standard form:

min
$$z = -x_1 - 2x_2 + \beta S_1 + \beta S_2$$

s.t. $x_1 + x_2 + S_1 = 2$
 $2x_1 + x_2 + S_2 = 1$
 $x_1 x_2 S_1 S_2 \ge 0$

2.
$$n=4$$
 5 $m=2$ $\rightarrow |x_B|=2$ $|x_N|=2$

$$x_{B_{6}} = (S_{1} S_{2})$$

$$x_{N} \quad x_{B} \quad RHS$$

$$E_{B}^{T} N - C_{N}^{T} \quad D^{T} \quad C_{B}^{T} B^{-1} \delta \quad Cenonical$$

$$x_{B} \quad B^{-1} N \quad I \quad B^{-1} \ell \quad borm$$

$$B_{b} = (0) = I = B$$

$$C_{N_{b}}^{T} = C_{B_{b}}^{T} B_{b}^{T} N - C_{N_{b}}^{T} = -C_{N_{b}}^{T} = (1, 2)$$

$$\geq (x_{b_{b}}) = C_{B_{b}}^{T} B^{T} b = 0$$

$$Z = -\alpha_1 - 2\alpha_1$$

$$\downarrow$$

$$Z + \alpha_1 + 2\alpha_1 = 0.$$

3. Initial rableau:

1	X ₁	X 2	Sı	52	RHS	0.11 -00-
	١	2	0	D	0	Retio Test
Si		1-	1	0	2	2/I Y3
S ₂	2	1.1	0	l	1	1/1 -> S2 is leaving
2	-3	D	0	-2	- 2	Ro = Ro - 2R2
	-1	O	1	-1	ı	$R_1' = R_1 - R_2$
X,	2	1	0	1	1	$R_2' = R_2$
	1748.	Tableau		is optimal		as

the tableau is optimal as all $C_n^T \leq 0$

$$\frac{2}{x_1^*} = -2$$

$$x_1^* = 0$$

$$x_2^* = 1$$

$$x_1^* = 1$$

$$x_2^* = 1$$

$$x_2^* = 1$$

$$x_2^* = 1$$

$$x_2^* = 1$$

$$x_3^* = 1$$

$$x_4^* = 1$$

$$x_2^* = 1$$

$$x_3^* = 1$$

$$x_4^* = 1$$

$$x_2^* = 1$$

$$x_3^* = 1$$

$$x_4^* = 1$$

3. Show that the set of all **x** satisfying

$$\mathbf{A}\mathbf{x} \le \mathbf{b}$$
$$\mathbf{x} \ge \mathbf{0}$$

is convex. (Hint: take two arbitrary points satisfying the constraints, and consider a convex combination of these points)

and consider a convex combination of these points)

Let
$$x^{(1)}$$
 and $x^{(2)}$ are:

$$Ax^{(1)} \leq \theta$$

$$Ax^{(2)} \leq \theta$$

$$X = dx^{(1)} + (1-d)x^{(2)}, \quad 0 < d < 1$$
Point on the Interval between $x^{(1)}$ and $x^{(2)}$

$$Ax^{(2)} \leq \theta$$

$$Ax^{(1)} + (1-d)Ax^{(2)} \leq \theta$$

$$Ax^{(1)} + (1-d)B = \theta$$

$$Ax^{(2)} \leq \theta$$

$$Ax^{(3)} + (1-d)B = \theta$$

$$Ax^{(4)} + (1-d)B = \theta$$

$$x^{(4)} + (1-d)B =$$

in a vector Form

Let
$$\chi^{(i)}$$
 $\chi^{(2)}$: $\chi^{(i)} = \begin{pmatrix} \chi^{(i)} \\ \chi^{(i)} \\ \chi^{(i)} \end{pmatrix}$ ≤ 1 $\chi^{(2)} = \begin{pmatrix} \chi^{(i)} \\ \chi^{(i)} \\ \chi^{(2)} \end{pmatrix}$ ≤ 1 $\chi^{(2)} = \begin{pmatrix} \chi^{(2)} \\ \chi^{(2)} \\ \chi^{(2)} \end{pmatrix}$ ≤ 1 $\chi^{(2)} = \begin{pmatrix} \chi^{(2)} \\ \chi^{(2)} \\ \chi^{(2)} \end{pmatrix}$

$$\widetilde{x} = dx^{(1)} + (1-d)x^{(2)}$$
, $0 < d < 1$

Point on the Interval between $x^{(1)}$ and $x^{(2)}$

$$(5,3)\widetilde{x} = d(5,3)x^{(1)} + (1-d)(5,3)x^{(2)} \leq d + (1-d) = 1$$

$$(5,3)\widetilde{x} \leq 1 \rightarrow \widetilde{x} \text{ is in the set,}$$

the set is convex