37242 Introduction to Optimisation

Tutorial 6

1. We first put the problem into standard form, giving:

Since s_2 can be used in an initial basis, we just need an artificial variable in the first row. So the Phase-I problem is

giving the tableau

	x_1	x_2	s_1	s_2	a_1	rhs
\overline{w}	0	0	0	0	-1	0
$\overline{a_1}$	1	1	-1	0	1	4
s_2	3	2	0	1	0	24

First we need to eliminate the nonzero row-0 coefficient in the column of the basic variable a_1 by some EROs. Then the initial Phase-I tableau is yielded.

	x_1	x_2	s_1	s_2	a_1	rhs	
\overline{w}	1	1	-1	0	0	4	$R_0' \leftarrow R_0 + R_1$
$\overline{a_1}$	1	1	-1	0	1	4	
s_2	3	2	0	1	0	24	_

Do the pivoting by entering x_1 and leaving a_1 .

		x_1	x_2	s_1	s_2	a_1	$_{ m rhs}$	
	\overline{w}	0	0	0	0	-1	0	$R_0'' \leftarrow R_0' - R_1'$
-	x_1	1		-1	0	1	4	
	s_2	0	-1	3	1	-3	12	$R_2'' \leftarrow R_2' - 3R_1'$

No positive reduced cost exists so this is the final Phase-I tableau. Since we have the optimal value $w_{\min} = 0$, there exists a bfs for the original LP. There is no artificial variables in the basis, so we can proceed to Phase II by dropping the column corresponding to a_1 and replacing the row 0 with the objective function of the original problem.

	x_1	x_2	s_1	s_2	rhs
\overline{z}	1	2	0	0	0
$\overline{x_1}$	1	1	-1	0	4
s_2	0	-1	3	1	12

Again, there is a nonzero row-0 coefficient in thee column of the basic variable x_1 , so we need to cancel this out. The tableaux of subsequent Simplex iterations are shown as below.

	x_1	x_2	s_1	s_2	rhs	
\overline{z}	0	1	1	0	-4	$R_0' \leftarrow R_0 - R_1$
$\overline{x_1}$	1	1	-1	0	4	
s_2	0	-1	3	1	12	
\overline{z}	-1	0	2	0	-8	$R_0'' \leftarrow R_0' - R_1'$
$\overline{x_2}$	1	1	-1	0	4	
s_2	1	0	2	1	16	$R_2'' \leftarrow R_2' + R_1'$
\overline{z}	-2	0	0	-1	-24	$R_0''' \leftarrow R_0'' - R_2''$
$\overline{x_2}$	$\frac{3}{2}$	1	0	$\frac{1}{2}$	12	$R_1''' \leftarrow R_1'' + R_2'''$
s_1	$\frac{\overline{1}}{2}$	0	1	$\frac{1}{2}$	8	$R_2^{\prime\prime\prime} \leftarrow \frac{1}{2} R_2^{\prime\prime}$

Hence, the optimal solution is z = -24 when $x_1 = 0, x_2 = 12, s_1 = 8$ and $s_2 = 0$.

To solve it with the Big-M method, we first generate the following modified LP model

and then have the following initial simplex tableau satisfying the canonical form

	x_1	x_2	s_1	s_2	a_1	rhs
z'	M+1	M+2	-M	0	0	4M
a_1	1	1	-1	0	1	4
s_2	3	2	0	1	0	24
z'	-1	0	2	0		-8
$\overline{x_2}$	1	1	-1	0		4
s_2	1	0	2	1		16
z'	-2	0	0	-1		-24
x_2	$\frac{3}{2}$	1	0	$\frac{1}{2}$		12
s_1	$\frac{\overline{1}}{2}$	0	1	$\frac{\overline{1}}{2}$		8

An identical solution to that using Two-phase is obtained.

2. We add a slack variable to the first row, which can serve as an initial basis element. Then we need a second basis element, so we add an artificial variable to the second row. The Phase I objective is then to minimize the value of this artificial variable.

(Note: you could add an artificial variable to the first row as well as the slack variable — this would still be correct, but would involve more work than absolutely necessary. However, if you add an artificial variable *instead of* the slack variable, then that is wrong!)

	x_1	x_2	x_3	s_1	a_1	rhs
\overline{w}	0	0	0	0	-1	0
s_1	1	4	4	1	0	2
a_1	0	1	1	0	1	1

We need a zero row-0 coefficient in a_1 's column to satisfy the canonical form and begin on the Simplex method:

	x_1	x_2	x_3	s_1	a_1	$_{ m rhs}$	
\overline{w}	0	1	1	0	0	1	$R_0' \leftarrow R_0 + R_2$
s_1	1	4	4	1	0	2	
a_1	0	1	1	0	1	1	
\overline{w}	$-\frac{1}{4}$	0	0	$-\frac{1}{4}$	0	$\frac{1}{2}$	$R_0'' \leftarrow R_0' - R_1''$
x_2	$\frac{1}{4}$	1	1	$\frac{1}{4}$	0	$\frac{1}{2}$	$R_1'' \leftarrow \frac{1}{4}R_1'$
a_1	$-\frac{1}{4}$	0	0	$-\frac{1}{4}$	1	$\frac{1}{2}$	$R_2'' \leftarrow R_2' - R_1''$

Now, we have no negative reduced costs, so this is the optimal solution to the Phase-I LP. However, a_1 is still in the basis, and the optimal objective value is $w_{\min} = \frac{1}{2}$. This means that there is no feasible solution to the original problem.

To solve it with the Big-M method, we first generate the following modified LP model

and then have the following initial simplex tableau satisfying the canonical form

	x_1	x_2	x_3	s_1	a_1	rhs
z'	-3	M+2	M	0	0	M
$\overline{s_1}$	1	4	4	1	0	2
a_1	0	1	1	0	1	1
z'	$-\frac{(M+14)}{4}$	0	-2	$-\frac{(M+2)}{4}$	0	$\frac{(M-2)}{2}$
x_2	$\frac{1}{4}$	1	1	$\frac{1}{4}$	0	$\frac{1}{2}$
a_1	$-\frac{1}{4}$	0	0	$-\frac{1}{4}$	1	$\frac{1}{2}$

There is no positive reduced cost on row 0 for further Simplex iteration, but the artificial variable a_1 is positive. So the original LP is infeasible.

3. We add excess(or surplus) variables, and then need to add an artificial variable to each row, leading to the Phase-I problem:

So we put this into tableau form, cancel out the nonzero row-0 coefficients in the basic variables' columns, and then solve with the Simplex method:

	x_1	x_2	x_3	s_1	s_2	a_1	a_2	rhs	
\overline{w}	0	0	0	0	0	-1	-1	0	
a_1	-3	3	2	-1	0	1	0	10	
a_2	2	-2	-1	0	-1	0	1	16	
\overline{w}	-1	1	1	-1	-1	0	0	26	$R_0' \leftarrow R_0 + R_1 + R_2$
a_1	-3	3	2	-1	0	1	0	10	
a_2	2	-2	-1	0	-1	0	1	16	
\overline{w}	$\frac{1}{2}$	$-\frac{1}{2}$	0	$-\frac{1}{2}$	-1	$-\frac{1}{2}$	0	21	$R_0'' \leftarrow R_0' - R_1''$
x_3	$-\frac{3}{2}$	$\frac{3}{2}$	1	$-\frac{1}{2}$	0	$\frac{1}{2}$	0	5	$R_1'' \leftarrow \frac{1}{2}R_1'$
a_2	$\frac{1}{2}$	$-\frac{1}{2}$	0	$-\frac{1}{2}$	-1	$\frac{1}{2}$	1	21	$R_2'' \leftarrow R_2' + R_1''$
\overline{w}	0	0	0	0	0	-1	-1	0	$R_0^{\prime\prime\prime} \leftarrow R_0^{\prime\prime} - R_2^{\prime\prime}$
$\overline{x_3}$	0	0	1	-2	-3	2	3	68	$R_1''' \leftarrow R_1'' + 3R_2''$
x_1	1	-1	0	-1	-2	1	2	42	$R_2^{\prime\prime\prime} \leftarrow 2R_2^{\prime\prime}$

Thus, we have reached the end of Phase I with an optimal solution $w_{\min} = 0$. No artificial variables remains in the optimal basis, so we dump the artificial variables and go back to the original objective function:

	x_1	x_2	x_3	s_1	s_2	rhs
\overline{z}	-3	2	-1	0	0	0
$\overline{x_3}$	0	0	1	-2	-3	68
x_1	1	-1	0	-1	-2	42

Again, we need a canonical form as below:

	x_1	x_2	9		s_2		
\overline{z}	0						$R_0' \leftarrow R_0 + R_1 + 3R_2$
$\overline{x_3}$	0	0	1	-2	-3	68	•
x_1	1	-1	0	-1	-2	42	

No Simplex iteration is needed since all the reduced costs are non-positive. This is optimal Phase-II tableau, and the optimal solution to the original problem is $z_{\min} = 194$ at $x_1 = 42, x_2 = 0$ and $x_3 = 68$.

To solve it with the Big-M method, we first generate the following modified LP model

and then have the following initial simplex tableau satisfying the canonical form

	x_1	x_2	x_3	s_1	s_2	a_1	a_2	rhs
z'	-M-3	M+2	M-1	-M	-M	0	0	26M
a_1	-3	3	2	-1	0	1	0	10
a_2	2	-2	-1	0	-1	0	1	16
z'	-1	0	$\frac{M-7}{3}$	$\frac{-2M+2}{3}$	-M		0	$\frac{68M-20}{3}$
x_2	-1	1	$\frac{2}{3}$	$-\frac{1}{3}$	0		0	$\frac{10}{3}$
a_2	0	0	$\frac{1}{3}$	$-\frac{2}{3}$	-1		1	$\frac{68}{3}$
z'	$\frac{M-9}{2}$	$\frac{-M+7}{2}$	0	$\frac{-M-1}{2}$	-M		0	21M + 5
x_3	$-\frac{3}{2}$	$\frac{3}{2}$	1	$-\frac{1}{2}$	0		0	5
a_2	$\frac{1}{2}$	$-\frac{1}{2}$	0	$-\frac{1}{2}$	-1		1	21
z'	0	-1	0	-5	-9			194
$\overline{x_3}$	0	0	1	-2	-3			68
x_1	1	-1	0	-1	-2			42

No Simplex iteration is needed since all the reduced costs are non-positive. This is optimal tableau, and the optimal solution to the original problem is $z_{\min} = 194$ at $x_1 = 42$, $x_2 = 0$ and $x_3 = 68$.