37242 Introduction to Optimisation

Tutorial 7

1. If we solve the LP

then the Simplex method ends with the optimal solution, and the final tableau (adding slack variables s_1, s_2, s_3 to the three constraints) is:

basic	x_1	x_2	x_3	s_1	s_2	s_3	rhs
z	0	0	$-\frac{9}{8}$	$-\frac{3}{2}$	0	$-\frac{13}{8}$	$-25\frac{1}{2}$
x_2	0	1	$-\frac{5}{8}$	$\frac{1}{2}$	0	$-\frac{1}{8}$	$\frac{1}{2}$
s_2	0	0	$\frac{21}{8}$	$-\frac{5}{2}$	1	$\frac{1}{8}$	$\frac{15}{2}$
x_1	1	0	$\frac{1}{4}$	0	0	$\frac{1}{4}$	3

- (a) By how much can the right-hand side of the first constraint increase and decrease without changing the optimal basis?
- (b) By how much can the objective coefficient of x_3 increase and decrease without changing the optimal basis?
- (c) By how much can the objective coefficient of x_1 increase and decrease without changing the optimal basis?
- (d) By how much can the coefficient of x_3 in the first constraint increase and decrease without changing the optimal basis?

1 Over...

2. Consider the LP:

$$\min z = -3x_1 + x_2 - 7x_3$$
s.t. $x_1 + 4x_2 + 2x_3 + x_4 = 15$

$$3x_1 - 2x_2 + 4x_3 + x_5 = 5$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0.$$

The Simplex method ends with the optimal solution, and the final tableau is:

basic	x_1	x_2	x_3	x_4	x_5	rhs
\overline{z}	-2	0	0	-0.5	-1.5	-15
x_2	-0.1	1	0	0.2	-0.1	2.5
x_3	0.7	0	1	0.1	0.2	2.5

- (a) By how much can the objective coefficient of x_3 increase and decrease without changing the optimal basis?
- (b) By how much can the coefficient of x_1 in the first constraint increase and decrease without changing the optimal basis?
- (c) Suppose the right-hand side of the original problem is replaced by $\mathbf{b}' = \begin{bmatrix} 15 \\ 5 + \Delta \end{bmatrix}$.
 - i. What values can Δ take on without changing the optimal basis?
 - ii. What is the optimal objective value (as a function of Δ) over the range found in part i. ?

(d) Solve the following LP:

(e) Solve the following LP:

(f) Compare the objective value in parts d) and e) to those in the initial problem, and compare the changes to the components in the vector $\mathbf{c_B}^T \mathbf{B}^{-1}$.

2

1. If we solve the LP

$$A = \begin{pmatrix} x_1 & x_2 & x_3 & s_1 & s_2 & min \\ 1 & 2 & -1 & 1 & 0 & 0 \\ 2 & 5 & 0 & 0 & 1 & 0 \\ 4 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} z = -8x_1 - 3x_2 + x_3 \\ s.t. & x_1 + 2x_2 - x_3 \le 4 \\ 2x_1 + 5x_2 & \le 16 \\ 4x_1 & + x_3 \le 12 \\ x_1, x_2, x_3 \ge 0, \end{pmatrix}$$

then the Simplex method ends with the optimal solution, and the final tableau (adding slack variables s_1, s_2, s_3 to the three constraints) is:

	(2) - 3	- 0		•	
	basic	x_1	x_2	$\overset{ extbf{N}}{x_3}$	s_1 B \bullet	$oldsymbol{g}_2$	s_3 B.	rhs
	\overline{z}	0	0	$-\frac{9}{8}$	$-\frac{3}{2}$	0	$-\frac{13}{8}$	$-25\frac{1}{2}$
	$\overline{x_2}$	0	1	$-\frac{5}{8}$	$\frac{1}{2}$	0	$-\frac{1}{8}$	
	s_2	0	0	$\frac{21}{8}$	$-\frac{1}{2}$ $-\frac{5}{2}$	1	$\frac{1}{8}$	$\frac{\frac{1}{2}}{\frac{15}{2}}$
	x_1	1	0	$\frac{1}{4}$		0	$\frac{1}{4}$	3
ΧB	= (12	5 ₂ X ₁)	B	5 = ($\frac{\frac{1}{2}}{\frac{5}{2}}$	$ \begin{array}{cccc} 0 & -\frac{1}{8} \\ 1 & \frac{1}{8} \\ 0 & \frac{1}{2} \end{array} $	8
	= (5,		3)	<u>g</u>	"N = (-5/8 -1 21/8 -1	\(\frac{1}{2} \ \ -\frac{1}{8} \\ \(\frac{1}{2} \ \ \ \frac{1}{8} \\ \(\frac{1}{2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
C =	-8 -3 0 0 5 0 5	1 · · · · · · · · · · · · · · · · · · ·		1) = (/4 (-1 1 0 0 1 0 ×3 S	0 /4 / 0 / 0 / 0 / 1 / 53	
6 =	(4) (16) (12)		B.	6 =	(15/2)	= 13	$= \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ = \\ = \\ = \\$	
			CR	B ⁻¹ =	$-\frac{3}{2}$	0	$-\frac{13}{8}$	

- (a) By how much can the right-hand side of the first constraint increase and decrease without changing the optimal basis?
- (b) By how much can the objective coefficient of x_3 increase and decrease without changing the optimal basis?
- (c) By how much can the objective coefficient of x_1 increase and decrease without changing the optimal basis?
- (d) By how much can the coefficient of x_3 in the first constraint increase and decrease without changing the optimal basis?

a)
$$6 = 6 + (0) \leftarrow \text{change in the 1st constr.}$$

$$\mathbf{x}_{B}^{'} = B^{-1} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = B^{-1} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = B^{-1} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\$$

$$\int_{15/2}^{12} - \frac{1}{2} \Delta \ge 0.$$

$$|5/2 - \frac{5}{2} \Delta \ge$$

$$\frac{2^{*'}}{2} = \frac{c_{B}^{T}}{B^{-1}} \frac{6^{-1}}{6^{-1}} = \frac{c_{B}^{T}}{B^{-1}} \frac{1}{6^{-1}} \frac{1}$$

b)
$$C_3' = C_3 + \Delta$$
 $\hat{C}_N^T = (-\frac{9}{8} - \frac{3}{2} - \frac{13}{8})$

As x_3 is non-basic variable, the change will affect c_3 $c_3' = c_B' B^{-1} A_3 - c_3' = c_B^{\dagger} B^{-1} A_3 - c_3 - \Delta =$ $= c_3 - \Delta \le 0$ to keep x_B optimal

$$\Delta \geqslant -\frac{8}{8}$$

c) $c'_1 = c_1 + \Delta \rightarrow x_1$ is basic \rightarrow the change affects all c_n

$$C_{B}^{1} = C_{B} + \Delta_{C_{B}} = \frac{x_{2}}{2} \begin{pmatrix} -3 \\ 0 \\ -8 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ \Delta \end{pmatrix}$$

$$C_{N}^{N} = C_{B}^{T} B^{-1} N - C_{N}^{T} = (C_{B} + \Delta_{C_{B}})^{T} B^{-1} N - C_{N}^{T} =$$

$$= C_{B}^{T} B^{-1} N - C_{N}^{T} + \Delta_{C_{B}}^{T} B^{-1} N =$$

$$= \begin{array}{c} \overbrace{C}_{N}^{T} + \Delta_{CB}^{T} B^{-1} N & \leq 0 \\ \downarrow \\ C_{N} & \leq 0 \end{array}$$

$$(-q/8 - \frac{3}{2} - \frac{13}{8}) + (0, 0, 0) \begin{pmatrix} -\frac{5}{8} & \frac{1}{8} & -\frac{1}{8} \\ \frac{1}{18} & \frac{5}{18} & \frac{1}{18} \end{pmatrix} =$$

$$= \left(-\frac{q}{8} + \frac{1}{4}\Delta, -\frac{3}{2} + 0, -\frac{13}{8} + \frac{1}{4}\Delta\right)$$

$$\begin{pmatrix} -\frac{q}{8} + \frac{1}{4}\Delta & 0 \\ -\frac{13}{8} + \frac{1}{4}\Delta & 0 \end{pmatrix} \rightarrow \begin{pmatrix} \Delta \leq \frac{q}{2} \\ \Delta \leq \frac{13}{2} \end{pmatrix} \rightarrow \Delta \leq \frac{q}{2}$$

$$d) \quad A_{13}^{1} = A_{13} + \Delta \qquad \text{coeff. for } x_{3} \text{ in } 1^{s+} \text{constr.}$$

$$A_{3}^{1} = A_{3} + \begin{pmatrix} \Delta \\ 0 \\ 0 \end{pmatrix}$$

$$\chi_{3} \text{ is non-basic} \rightarrow \text{only } \hat{C}_{3} \text{ will be affected}$$

$$\begin{pmatrix} \hat{C}_{3}^{1} = \hat{C}_{B}^{+} B^{-1} A_{3}^{1} - \hat{C}_{3} = \hat{C}_{B}^{+} B^{-1} A_{3} =$$

$$= \hat{C}_{3}^{1} + \hat{C}_{B}^{1} B^{-1} A_{3} \leq 0 \rightarrow \text{to keep affected}$$

$$\begin{pmatrix} \hat{C}_{3}^{1} = \hat{C}_{B}^{1} A_{3} - \hat{C}_{3} + \hat{C}_{B}^{+} B^{-1} A_{3} \leq 0 \rightarrow \text{to keep affected}$$

$$\begin{pmatrix} \hat{C}_{3}^{1} = \hat{C}_{B}^{1} A_{3} - \hat{C}_{3} + \hat{C}_{B}^{+} B^{-1} A_{3} \leq 0 \rightarrow \text{to keep affected}$$

$$\begin{pmatrix} \hat{C}_{3} = \hat{C}_{B}^{1} B^{-1} A_{3} \leq 0 \rightarrow \text{to keep affected} \end{pmatrix}$$

$$\begin{pmatrix} \hat{C}_{3} = \hat{C}_{B}^{1} B^{-1} A_{3} \leq 0 \rightarrow \text{to keep affected} \end{pmatrix}$$

$$\begin{pmatrix} \hat{C}_{3} = \hat{C}_{3}^{1} + \hat{C}_{3}^{1} B^{-1} A_{3} \leq 0 \rightarrow \text{to keep affected} \end{pmatrix}$$

$$\begin{pmatrix} \hat{C}_{3} = \hat{C}_{3}^{1} + \hat{C}_{3}^{1} B^{-1} A_{3} \leq 0 \rightarrow \text{to keep affected} \end{pmatrix}$$

$$\begin{pmatrix} \hat{C}_{3} = \hat{C}_{3}^{1} + \hat{C}_{3}^{1} B^{-1} A_{3} \leq 0 \rightarrow \text{to keep affected} \end{pmatrix}$$

$$\begin{pmatrix} \hat{C}_{3} = \hat{C}_{3}^{1} + \hat{C}_{3}^{1} B^{-1} A_{3} \leq 0 \rightarrow \text{to keep affected} \end{pmatrix}$$

$$\begin{pmatrix} \hat{C}_{3} = \hat{C}_{3}^{1} + \hat{C}_{3}^{1} B^{-1} A_{3} \leq 0 \rightarrow \text{to keep affected} \end{pmatrix}$$

$$\begin{pmatrix} \hat{C}_{3} = \hat{C}_{3}^{1} + \hat{C}_{3}^{1} B^{-1} A_{3} \leq 0 \rightarrow \text{to keep affected} \end{pmatrix}$$

$$\begin{pmatrix} \hat{C}_{3} = \hat{C}_{3}^{1} + \hat{C}_{3}^{1} B^{-1} A_{3} \leq 0 \rightarrow \text{to keep affected} \end{pmatrix}$$

$$\begin{pmatrix} \hat{C}_{3} = \hat{C}_{3}^{1} + \hat{C}_{3}^{1} B^{-1} A_{3} \leq 0 \rightarrow \text{to keep affected} \end{pmatrix}$$

$$\begin{pmatrix} \hat{C}_{3} = \hat{C}_{3}^{1} + \hat{C}_{3}^{1} B^{-1} A_{3} \leq 0 \rightarrow \text{to keep affected} \end{pmatrix}$$

$$\begin{pmatrix} \hat{C}_{3} = \hat{C}_{3} + \hat{C}_{3}^{1} B^{-1} A_{3} \leq 0 \rightarrow \text{to keep affected} \end{pmatrix}$$

$$\begin{pmatrix} \hat{C}_{3} = \hat{C}_{3} + \hat{C}_{3}^{1} B^{-1} A_{3} \leq 0 \rightarrow \text{to keep affected} \end{pmatrix}$$

$$\begin{pmatrix} \hat{C}_{3} = \hat{C}_{3} + \hat{C}_{3} B^{-1} A_{3} \leq 0 \rightarrow \text{to keep affected} \end{pmatrix}$$

$$\begin{pmatrix} \hat{C}_{3} = \hat{C}_{3} + \hat{C}_{3} B^{-$$

- · over leaf. com
- . MikTeX -> Texworks