37242 Introduction to Optimisation

Tutorial 7

1. If we solve the LP

then the Simplex method ends with the optimal solution, and the final tableau (adding slack variables s_1, s_2, s_3 to the three constraints) is:

basic	x_1	x_2	x_3	s_1	s_2	s_3	rhs
z	0	0	$-\frac{9}{8}$	$-\frac{3}{2}$	0	$-\frac{13}{8}$	$-25\frac{1}{2}$
x_2	0	1	$-\frac{5}{8}$	$\frac{1}{2}$	0	$-\frac{1}{8}$	$\frac{1}{2}$
s_2	0	0	$\frac{21}{8}$	$-\frac{5}{2}$	1	$\frac{1}{8}$	$\frac{15}{2}$
x_1	1	0	$\frac{1}{4}$	0	0	$\frac{1}{4}$	3

- (a) By how much can the right-hand side of the first constraint increase and decrease without changing the optimal basis?
- (b) By how much can the objective coefficient of x_3 increase and decrease without changing the optimal basis?
- (c) By how much can the objective coefficient of x_1 increase and decrease without changing the optimal basis?
- (d) By how much can the coefficient of x_3 in the first constraint increase and decrease without changing the optimal basis?

1 Over...

2. Consider the LP:

$$\min z = -3x_1 + x_2 - 7x_3$$
s.t. $x_1 + 4x_2 + 2x_3 + x_4 = 15$

$$3x_1 - 2x_2 + 4x_3 + x_5 = 5$$

$$x_1, x_2, x_3, x_4, x_5 > 0.$$

The Simplex method ends with the optimal solution, and the final tableau is:

basic	x_1	x_2	x_3	x_4	x_5	rhs
\overline{z}	-2	0	0	-0.5	-1.5	-15
x_2	-0.1	1	0	0.2	-0.1	2.5
x_3	0.7	0	1	0.1	0.2	2.5

- (a) By how much can the objective coefficient of x_3 increase and decrease without changing the optimal basis?
- (b) By how much can the coefficient of x_1 in the first constraint increase and decrease without changing the optimal basis?
- (c) Suppose the right-hand side of the original problem is replaced by $\mathbf{b}' = \begin{bmatrix} 15 \\ 5 + \Delta \end{bmatrix}$.
 - i. What values can Δ take on without changing the optimal basis?
 - ii. What is the optimal objective value (as a function of Δ) over the range found in part i. ?

(d) Solve the following LP:

(e) Solve the following LP:

(f) Compare the objective value in parts d) and e) to those in the initial problem, and compare the changes to the components in the vector $\mathbf{c_B}^T \mathbf{B}^{-1}$.

2