Tutorial 7

Question 1

From the final tableau we have

$$\mathbf{x}_{\mathbf{B}} = (x_2, s_2, x_1)^T, \quad \mathbf{B}^{-1} = \begin{pmatrix} \frac{1}{2} & 0 & -\frac{1}{8} \\ -\frac{5}{2} & 1 & \frac{1}{8} \\ 0 & 0 & \frac{1}{4} \end{pmatrix},$$

$$\mathbf{c}_{\mathbf{B}}^T \mathbf{B}^{-1} = \begin{pmatrix} -\frac{3}{2}, 0, -\frac{13}{8} \end{pmatrix}, \quad \mathbf{B}^{-1} \mathbf{b} = \begin{pmatrix} \frac{1}{2}, \frac{15}{2}, 3 \end{pmatrix}^T.$$

$$\mathbf{N} = (\mathbf{A}_3 \ \mathbf{A}_4 \ \mathbf{A}_6), \quad \mathbf{B}^{-1} \mathbf{N} = \begin{pmatrix} -\frac{5}{8} & \frac{1}{2} & -\frac{1}{8} \\ \frac{21}{8} & -\frac{5}{2} & \frac{1}{8} \\ \frac{1}{4} & 0 & \frac{1}{4} \end{pmatrix}$$

1.a Let the new right hand side be

$$\mathbf{b}' = \mathbf{b} + (\triangle, 0, 0)^T$$

The value \triangle must keep the corresponding new basis solution $\mathbf{x}_{\mathbf{B}}' \geq \mathbf{0}$, i.e. it must satisfy the (vector)inequality

$$\mathbf{x'_B} = \mathbf{B}^{-1}\mathbf{b'}$$

$$= \mathbf{B}^{-1}(\mathbf{b} + (\triangle, 0, 0)^T)$$

$$= \mathbf{B}^{-1}\mathbf{b} + \mathbf{B}^{-1}(\triangle, 0, 0)^T$$

$$= \left(\frac{1}{2}, \frac{15}{2}, 3\right)^T + \left(\frac{\triangle}{2}, -\frac{5\triangle}{2}, 0\right)^T$$

$$= \left(\frac{1}{2} + \frac{\triangle}{2}, \frac{15}{2} - \frac{5\triangle}{2}, 3\right)^T \ge \mathbf{0}$$

Hence $-1 \le \triangle \le 3$.

1.b Let the new coefficient of x_3 be $c_3' = c_3 + \triangle$. Denote the corresponding new reduced cost of x_3 by \widetilde{c}_3 . Since x_3 is a non-basic variable, the value \triangle must keep $\widetilde{c}_3 \leq 0$, i.e.

$$\begin{aligned}
\widehat{c}_3 &= \mathbf{c_B} \mathbf{B}^{-1} \mathbf{A}_3 - c_3' \\
&= \mathbf{c_B} \mathbf{B}^{-1} \mathbf{A}_3 - (c_3 + \triangle) \\
&= (\mathbf{c_B} \mathbf{B}^{-1} \mathbf{A}_3 - c_3) - \triangle \\
&= \widehat{c}_3 - \triangle \\
&= -\frac{9}{8} - \triangle \le 0
\end{aligned}$$

Hence
$$\triangle \geq -\frac{9}{8}$$
.

1.c Let the new coefficient of x_1 be $c'_1 = c_1 + \triangle$. Then the new vector of basic coefficients is $\mathbf{c}_{\mathbf{B}}^T + (0, 0, \triangle)$. Since x_1 is a basic variable, the value \triangle must keep the reduced cost of all nonbasic variables non-positive, i.e.

$$\widehat{\mathbf{c}}_{\mathbf{N}}^{T} = \mathbf{c}_{\mathbf{B}}^{T} \mathbf{B}^{-1} \mathbf{N} - \mathbf{c}_{\mathbf{N}}^{T}
= (\mathbf{c}_{\mathbf{B}}^{T} + (0, 0, \triangle)) \mathbf{B}^{-1} \mathbf{N} - \mathbf{c}_{\mathbf{N}}^{T}
= (\mathbf{c}^{T} \mathbf{B}^{-1} \mathbf{N} - \mathbf{c}_{\mathbf{N}}^{T}) + (0, 0, \triangle) \mathbf{B}^{-1} \mathbf{N}
= \widehat{\mathbf{c}}_{\mathbf{N}} + (0, 0, \triangle) \begin{pmatrix} -\frac{5}{8} & \frac{1}{2} & -\frac{1}{8} \\ \frac{21}{8} & -\frac{5}{2} & \frac{1}{8} \\ \frac{1}{4} & 0 & \frac{1}{4} \end{pmatrix}
= (-\frac{9}{8}, -\frac{3}{2}, -\frac{13}{8}) + (\frac{\triangle}{4}, 0, \frac{\triangle}{4})
= (-\frac{9}{8} + \frac{\triangle}{4}, -\frac{3}{2}, -\frac{13}{8} + \frac{\triangle}{4}) \le \mathbf{0}$$

Hence
$$\triangle \leq \min\left\{\frac{9}{2}, \frac{13}{2}\right\} = \frac{9}{2}$$
.

1.d Let the new coefficient of x_3 in the first constraint be $a'_{13} = a_{13} + \triangle$. Then the new column vector corresponding to x_3 in the matrix **A** is

$$\mathbf{A}_3' = \mathbf{A}_3 + (\triangle, 0, 0)^T$$

Since x_3 is a non-basic variable, the value \triangle must keep the new reduced cost of x_3 non-positive, i.e.

$$\begin{aligned}
\widetilde{c}_{3} &= \mathbf{c}_{\mathbf{B}}^{T} \mathbf{B}^{-1} \mathbf{A}_{3}' - c_{3} \\
&= \mathbf{c}_{\mathbf{B}}^{T} \mathbf{B}^{-1} (\mathbf{A}_{3} + (\triangle, 0, 0)^{T}) - c_{3} \\
&= (\mathbf{c}_{\mathbf{B}}^{T} \mathbf{B}^{-1} \mathbf{A}_{3} - c_{3}) + \mathbf{c}_{\mathbf{B}}^{T} \mathbf{B}^{-1} (\triangle, 0, 0)^{T}) \\
&= -\frac{9}{8} + \left(-\frac{3}{2}, 0, -\frac{13}{8} \right) (\triangle, 0, 0)^{T}) \\
&= -\frac{9}{8} - \frac{3\triangle}{2} \leq 0.
\end{aligned}$$

Hence
$$\triangle \ge -\frac{3}{4}$$
.

Question 2

From the final tableau we have

$$\mathbf{x_B} = (x_2, x_3)^T, \quad \mathbf{B}^{-1} = \begin{pmatrix} 0.2 & -0.1 \\ 0.1 & 0.2 \end{pmatrix},$$

$$\mathbf{c_B}^T \mathbf{B}^{-1} = (-0.5, -1.5), \quad \mathbf{B}^{-1} \mathbf{b} = (2.5, 2.5)^T.$$

$$\mathbf{N} = (\mathbf{A}_1 \ \mathbf{A}_4 \ \mathbf{A}_5), \quad \mathbf{B}^{-1} \mathbf{N} = \begin{pmatrix} -0.1 & 0.2 & -0.1 \\ 0.7 & 0.1 & 0.2 \end{pmatrix}$$

2.a Let the new coefficient of x_3 be $c'_3 = c_3 + \triangle$. Then the new vector of basic coefficients is $\mathbf{c}_{\mathbf{B}}^T + (0, \triangle)$. Since x_3 is a basic variable, the value \triangle must keep the reduced cost of all nonbasic variables non-positive. We can do this one-by-one, or combine them into an inequality of vectors, i.e.

$$\widehat{\mathbf{c}}_{\mathbf{N}}^{T} = \mathbf{c}_{\mathbf{B}}^{T} \mathbf{B}^{-1} \mathbf{N} - \mathbf{c}_{\mathbf{N}}^{T}
= (\mathbf{c}_{\mathbf{B}}^{T} + (0, \Delta)) \mathbf{B}^{-1} \mathbf{N} - \mathbf{c}_{\mathbf{N}}^{T}
= (\mathbf{c}^{T} \mathbf{B}^{-1} \mathbf{N} - \mathbf{c}_{\mathbf{N}}^{T}) + (0, \Delta) \mathbf{B}^{-1} \mathbf{N}
= \widehat{\mathbf{c}}_{\mathbf{N}} - (0, \Delta) \begin{pmatrix} -0.1 & 0.2 & -0.1 \\ 0.7 & 0.1 & 0.2 \end{pmatrix}
= (-2, -0.5, -1.5) + (0.7\Delta, 0.1\Delta, 0.2\Delta)
= (0.7\Delta - 2, 0.1\Delta - 0.5, 0.2\Delta - 0.15) \leq \mathbf{0}$$
Hence
$$\Delta \leq \min \left\{ \frac{2}{0.7}, \frac{0.5}{0.1}, \frac{1.5}{0.2} \right\} = \frac{2}{0.7} \approx 2.857.$$

2.b Let the new coefficient of x_1 in the first constraint be $a'_{11} = a_{11} + \triangle$. Then the new column vector corresponding to x_3 in the matrix **A** is

$$\mathbf{A}_1' = \mathbf{A}_1 + (\triangle, 0)^T$$

Since x_1 is a non-basic variable, the value \triangle must keep the new reduced cost of x_1 non-positive, i.e.

$$\begin{aligned}
\widetilde{c}_1 &= \mathbf{c_B} \mathbf{B}^{-1} \mathbf{A}_1' - c_1 \\
&= \mathbf{c_B}^T \mathbf{B}^{-1} (\mathbf{A}_1 + (\triangle, 0)^T) - c_1 \\
&= (\mathbf{c_B}^T \mathbf{B}^{-1} \mathbf{A}_1 - c_1) + \mathbf{c_B}^T \mathbf{B}^{-1} (\triangle, 0)^T) \\
&= -2 + (-0.5, -1.5)(\triangle, 0)^T) \\
&= -2 - 0.5\Delta \leq 0.
\end{aligned}$$
Hence
$$\Delta \geq -\frac{2}{0.5} = -4.$$

2.c i. Rewrite the new hand side in the form

$$\mathbf{b}' = \mathbf{b} + (0, \, \triangle)^T$$

The value \triangle must keep the corresponding new basis solution $\mathbf{x}'_{\mathbf{B}} \geq \mathbf{0}$, i.e. it must satisfy the (vector)inequality

$$\mathbf{x}'_{\mathbf{B}} = \mathbf{B}^{-1}\mathbf{b}'$$

$$= \mathbf{B}^{-1}(\mathbf{b} + (0, \triangle)^{T})$$

$$= \mathbf{B}^{-1}\mathbf{b} + \mathbf{B}^{-1}(0, \triangle)^{T}$$

$$= (2.5, 2.5)^{T} + \begin{pmatrix} 0.2 & -0.1 \\ 0.1 & 0.2 \end{pmatrix} (0, \triangle)^{T}$$

$$= (2.5, 2.5)^{T} + (-0.1\triangle, 0.2\triangle)^{T}$$

$$= (2.5 - 0.1\triangle, 2.5 + 0.2\triangle)^{T} \ge \mathbf{0}$$

Hence
$$-\frac{2.5}{0.2} \le \triangle \le \frac{2.5}{0.1} \Leftrightarrow -12.5 \le \triangle \le 25.$$

ii. The new objective value is

$$\mathbf{c}_{\mathbf{B}}^{T}\mathbf{B}^{-1}\mathbf{b}' = (-0.5, -1.5)\begin{pmatrix} 15\\ 5+\triangle \end{pmatrix} = -15-1.5\triangle$$

- 2.d The optimal objective value is -15.5.
- 2.e The optimal objective value is -16.5.
- 2.f The vector $\mathbf{c}_{\mathbf{B}}^{T}\mathbf{B}^{-1}=(-0.5,-1.5)$ is called the vector of shadow prices (or shadow costs). This vector gives the change in objective value if the right hand side of the corresponding row is increased by one unit. In part $(2 \, \mathbf{d})$, the right hand side of the first row increased by one unit, so the objective value now is -15 + (-0.5) = -15.5. In part $(2.\mathbf{e})$, the right hand side of the second row increased by one unit, so the objective value now is -15 + (-1.5) = -16.5.