37242 Introduction to Optimisation

Tutorial 8

Question 1. Solve the unconstrained optimisation problem

min f(zy, 29) = 2% + 25 + 1109 + 41y

(a) By steepest descent method
(b) By Newton's method
(c)By finding stationary points and determining their nature

Extra excercises:

Question 2. Solve the unconstrained optimisation problem with the methods above

min f(v1, T9) = o7 + 25 + 47 — 629

Question 3. Prove that if A is an n x n positive definite matrix, then

(a) All eigenvalues of A are positive.
(b) A is invertible.

(c) All eigenvalues of A~! are positive.

Question 4. (Winston Chapter 11, Section 3, Question 1,2,7,8,9)

On the given set S, determine whether each function is convex,

concave, or neither.

f(xy, T, x3) = —23 — 2% — 222 + 0.57129; S = R3.



Question 1. Solve the unconstrained optimisation problem

min f (1, £2) = &7 + x5 + 1122 + 42

(a) By steepest descent method I_Co) = ( g) 3 £ =
(b) By Newton's method

(c)By finding stationary points and determining their nature
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(b) By Newton's method J ~v] /7 -

(c)By finding stationary points and determining their nature
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(c)By finding stationary points and determining their nature
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Question 2. Solve the unconstrained optimisation problem with the methods above

min f(zy, 29) = 27 + x5 + 4z, — 69
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Solve the unconstrained optimisation problem

min f(zy, 29) = 3 + 25 + 47, — 679

(a) Solve Vf(z1, x2) = 0 to find stationary point(s) of f(zq,xs).

(20 44\ (0 2\ (-2
v =(3255) - () = () - (5)
is the unique stationary point of f(xq,xs).

(b) Find the nature of the stationary point(s) in part (a).
20

For any point (1, 29)7 we have V2f(zy, z2) = 0 2) = 21. Since I is

positive definite, so is 21. Hence, f(x1,xs) is strictly convex on R2. So, the
stationary point (7, x3) is its global minimizer.

Note. The fact that V2 f(z1, x2) is positive definite could also be checked by

e directly considering
(21, 22)V2f (21, 22) (ﬁl) =2(x + a3 >0 for any (?) #0, or
2 2

e finding the eigenvalues of V2 f(x1, x3), which is A\; = Ay =2 > 0.



Question 3. Prove that if A is an n x n positive definite matrix, then

(a) All eigenvalues of A are positive.

If x is an eigenvector of A, corresponding to the eigenvalue A, then x # 0,
and Ax= \x. Therefore xTAx = \||x[|> >0 = X>0.

(b) A is invertible.

If it was not, then there must be a non-zero vector x such that Ax = 0.
Therefore x’ Ax = 0, which contradicts our assumption about A being
positive definite.

(c) All eigenvalues of A~! are positive.

Assume that \ is an eigenvalue of A~!. The there is a vector x # 0 such

that
A x = X
AA™x) = AQx)
x = AMAx. Since x # 0 = X # 0, so we have
Ax = /li X.

So, /1\ is an eigenvalue of A. By part (a) we have /1\ >0 = A>0.



Question 4. (Winston Chapter 11, Section 3, Question 1,2,7,8,9)

On the given set S, determine whether each function is convex,

concave, or neither.
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(a) f(x) =23 S= 0, 00). “)C[(Q(_) :‘7),)(-7- 1 T?!he,ap&& ' V\D’re
f(x) is convex on S. 7( ”(Qf) - o o+ ’F (’-13 =X S K
(b) f(z) =2 S=R. -l bx 20 for amy

THQ%S { e
f(x) is neither convex nor concave on S. X200 — 4’—(’1) ConJe ¥

(¢) f(xy, x3) =2+ 123 S=R> (,Tl’\ i)

The Hessian of the function f(x) at any point x € R? is

=33

The eigenvalues of this matrix are A1 = A2 = 2 > 0. Hence, f(x1,22) is
strictly convex on R2.

(d)  f(z1, 1) = —2% — 1129 — 223; S =R
The Hessian of the function f(x) at any point x € R? is

o) = (7 7)

The firs principal minors of this matrix are —2 < 0 and —4 < 0. The second
principal is (—2).(—4) — (—=1).(=1) = 7 > 0. Hence, by Theorem W2, f(x)
is a concave function on R?.

(e) f(zy, T, x3) = —22 — 2% — 222 + 0.52129; S =R?.

The Hessian of the function f(x) at any point x = (x1, 2, 23) € R? is

-2 05 O
Hx)=105 -2 0
0o 0 —4

e The first principal minors of this matrix are —2 < 0, =2 < 0, and —4 < 0.

e The second principal minors of this matrix are

2 0
0 -4

-2 0

0 -4

-2 05
0.5 -2

‘:3.75>0, ‘ ‘:8>O, ’ ‘2820.

e The third principal minors of this matrix is

-2 05 O
05 -2 0|=-15<0.
0 0 -4

Hence, by Theorem ¥¥2, f(x) is a concave function on R?>.



