37242 Introduction to Optimisation

Tutorial 8

Question 1. Solve the unconstrained optimisation problem

$$\min f(x_1, x_2) = x_1^2 + x_2^2 + x_1 x_2 + 4x_1$$

- (a) By steepest descent method
- (b) By Newton's method
- (c)By finding stationary points and determining their nature

Extra excercises:

Question 2. Solve the unconstrained optimisation problem with the methods above

$$\min f(x_1, x_2) = x_1^2 + x_2^2 + 4x_1 - 6x_2$$

Question 3. Prove that if A is an $n \times n$ positive definite matrix, then

- (a) All eigenvalues of **A** are positive.
- (b) A is invertible.
- (c) All eigenvalues of A^{-1} are positive.

Question 4. (Winston Chapter 11, Section 3, Question 1, 2, 7, 8, 9)

On the given set S, determine whether each function is convex, concave, or neither.

- (a) $f(x) = x^3$; $S = [0, \infty)$.
- (b) $f(x) = x^3$; S = R.
- (c) $f(x_1, x_2) = x_1^2 + x_2^2$; $\mathbf{S} = \mathbf{R}^2$.
- (d) $f(x_1, x_2) = -x_1^2 x_1x_2 2x_2^2$; $\mathbf{S} = \mathbf{R}^2$.
- (e) $f(x_1, x_2, x_3) = -x_1^2 x_2^2 2x_3^2 + 0.5x_1x_2$; $\mathbf{S} = \mathbf{R}^3$.

Question 1. Solve the unconstrained optimisation problem

$$\min f(x_1, x_2) = x_1^2 + x_2^2 + x_1 x_2 + 4x_1$$

- (a) By steepest descent method $\chi^{(0)} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$; $\xi = \frac{1}{2}$ (b) By Newton's method
- (c)By finding stationary points and determining their nature

a)
$$\nabla f(x) = \begin{pmatrix} 2x_1 + x_2 + 4 \\ 2x_2 + x_1 \end{pmatrix}$$

$$\nabla^2 f(x) = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

$$\frac{\text{It. 0}}{1 + 2} \quad x^{(0)} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
1. $\nabla f(0,0) = \begin{pmatrix} 4 \\ 0 \end{pmatrix}; \| \nabla f(0,0) \| = 4 > \epsilon$
2. $d_0 = -\nabla f(0,0) = \begin{pmatrix} -4 \\ 0 \end{pmatrix}$

$$\frac{\chi^{(0)}}{1 + 2} + 2d_0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} -42 \\ 0 \end{pmatrix} = \begin{pmatrix} -44 \\ 0 \end{pmatrix}$$
3. $g(a) = f(-4a, 0) = 16a^2 - 16a$
Find min $g(a)$

$$\rightarrow$$
 min is at vertex:
 $\frac{16}{2 \times 16} = \frac{1}{2}$

3.2
$$g'(d) = 32a - 16 \rightarrow g'(d) = 0$$

 $g'(d)$ when $d = \frac{1}{2}$

$$g''(\lambda) = 32 > 0$$
 for all $\lambda \rightarrow$

$$d = \frac{1}{2} \text{ is mi}$$

$$d = \frac{1}{2} - \frac{1}{2}$$

4.
$$x^{(1)} = \begin{pmatrix} -44 \\ 0 \end{pmatrix} = \begin{pmatrix} -2 \\ 0 \end{pmatrix}$$

It. 1
$$x^{(n)} = \begin{pmatrix} -2 \\ 6 \end{pmatrix}$$

$$|\nabla f(-2,0)| = \begin{pmatrix} -4+0+4\\ 0-2 \end{pmatrix} = \begin{pmatrix} 0\\ -2 \end{pmatrix}$$

$$||\nabla f(-2,0)|| = 2 > \varepsilon$$

$$2. d_1 = -\nabla f(-2_10) = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$$

$$x^{(i)} + \lambda d_{i} = \begin{pmatrix} -2 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 2\lambda \end{pmatrix} = \begin{pmatrix} -2 \\ 2\lambda \end{pmatrix}.$$

3.
$$g(d) = f(-2, 2d) = 4 + 4d^2 - 4d - 8$$

 $g'(d) = 8d - 4 = 0 \rightarrow a = \frac{1}{2}$
min $+ g'(d)$

$$4. \quad \chi^{(2)} = \begin{pmatrix} -\lambda \\ 1 \end{pmatrix}$$

It.
$$2 \quad x^{(2)} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

1. $\nabla f(-2, 1) = \begin{pmatrix} -4+1+4 \\ 2-2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

$$\|\nabla f(-2,1)\| = [> \varepsilon$$

2.
$$d_{2} = -\nabla f(-2|1) = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$\chi^{(2)} + \lambda d_{2} = \begin{pmatrix} -2 \\ 1 \end{pmatrix} + \begin{pmatrix} -\lambda \\ 0 \end{pmatrix} = \begin{pmatrix} -\lambda - \alpha \\ 1 \end{pmatrix}$$

3.
$$g(a) = f(-2-a, 1) = (2+a)^2 + 1 - (2+a) - 4(2+a)$$

Find min $g(a)$: $-5(2+a)$

$$g'(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2\lambda - 1 = 0 \quad \lambda = \frac{1}{2}$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2+\lambda) - 5 = 0 \Rightarrow 2$$

$$g''(\lambda) = \lambda(2$$

$$\|\nabla f(-\frac{5}{2}, 1)\| = \frac{1}{2} = \varepsilon \rightarrow STOP$$

(b) By Newton's method

(c)By finding stationary points and determining their nature

$$\nabla f(x) = \begin{pmatrix} 2x_1 + x_2 + 4 \\ 2x_2 + x_1 \end{pmatrix}$$

$$\nabla^2 f(x) = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

It. 0
$$x^{(0)} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

1.
$$\nabla f(0,0) = \begin{pmatrix} 4 \\ 0 \end{pmatrix}; \|\nabla f(\mathbf{0},0)\| = 4 > \varepsilon$$

$$2. x^{(1)} = x^{(0)} - \left[\nabla^2 f(x^{(0)})\right] \nabla f(x^{(0)})$$

$$\begin{bmatrix} \nabla^2 f(x) \end{bmatrix} = \frac{1}{3} \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

$$x^{(i)} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} - \frac{1}{3} \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 4 \\ 0 \end{pmatrix} = -\frac{1}{3} \begin{pmatrix} 8 \\ -4 \end{pmatrix} =$$

It. 1.
1.
$$\nabla f(-\frac{8}{3}, \frac{4}{3}) = \begin{pmatrix} -\frac{16}{3} + \frac{4}{3} + 4 \\ \frac{8}{3} - \frac{8}{3} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \rightarrow \text{Hence}_{0}$$

$$x = \begin{pmatrix} -\frac{8}{3} \\ \frac{4}{3} \end{pmatrix} \text{ is min}_{0}$$

(c)By finding stationary points and determining their nature

$$\nabla f(x) = \begin{pmatrix} 2x_1 + x_2 + 4 \\ 2x_2 + x_1 \end{pmatrix}$$

$$\nabla^2 f(x) = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

1. Find where $\nabla f(x) = 0$

$$\begin{cases} 2x_1 + x_2 + 4 = 0 & \text{if } x_2 \\ 2x_2 + x_1 = 0 & \text{if } \end{cases}$$

 $4x_1 + 2x_2 + 8 - 2x_2 - x_1 = 0$ $3x_1 = -8$ $x_1 = -8/3 \rightarrow x_2 = \frac{4}{3}$

The only st. point is $\begin{pmatrix} -8/3 \\ 4/3 \end{pmatrix}$

2. Nature of the st. point:

$$\nabla^2 f(x) = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \rightarrow \text{for all } x \in \mathbb{R}^h$$

Use Thy: find eigenvalues by solving det $(\nabla^2 f(x) - \lambda I) = 0$.

det
$$\begin{pmatrix} 2-\lambda & 1 \\ 1 & 2-\lambda \end{pmatrix} = 0$$

$$(2-\lambda)^{\frac{1}{2}}=1$$

$$2-\lambda=1$$

$$\lambda=1>0$$

$$\lambda=3>0$$

by Th. 4 $\nabla^2 f(x)$ is pos.-def. at every $x \in \mathbb{R}^n$

• at
$$x' = \begin{pmatrix} -8/3 \\ 4/3 \end{pmatrix}$$
 $\nabla f = 0$ and $\nabla^2 f$ is pos. - def

by Th. 6 x is Local minimiser

- as $\nabla^2 f(x)$ is pos.-def. at every $\infty \in \mathbb{R}^n$, by Th 7, f(x) is strictly convex
 - by Th. 3 x* is unique global minimiser

(a) All eigenvalues of A are positive.

A pos.-def
$$\rightarrow$$
 for any $x \neq 0$

$$x^{T} A x > 0$$
Let $x^{(i)} : Ax^{(i)} = \lambda_{i}x^{(i)}$

$$0 < x^{(i)^{T}}Ax^{(i)} = x^{(i)^{T}}\lambda_{i}x^{(i)} = \lambda_{i} \|x^{(i)}\|^{2}$$

if A is negative-definite,

show that all eigenvalues are

negative

Question 2. Solve the unconstrained optimisation problem with the methods above

$$\min f(x_1, x_2) = x_1^2 + x_2^2 + 4x_1 - 6x_2$$

$$\nabla f(x_1 x_2)^T = \langle 2x_1 + 4, 2x_2 - 6 \rangle$$

 $x^{(0)} = (0,0) \quad 5 \quad \varepsilon = 1/2$

It. D.

$$2. d_0 = -\nabla f(x^{(0)}) = \begin{pmatrix} -4 \\ 6 \end{pmatrix} \qquad x^{(0)} + 2d_0 = \begin{pmatrix} -42 \\ 62 \end{pmatrix}$$

3.
$$\lambda_{i}$$
 $g(\lambda) = f(-4\lambda, 6\lambda) = 16\lambda^{2} + 36\lambda^{2} - 16\lambda - 36\lambda$
 $g'(\lambda) = 104\lambda - 52; g'(\alpha) = 0 \text{ when } \lambda = \frac{1}{2}$

$$4. \quad \chi^{(1)} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$$

1.
$$\nabla f(x^{(1)}) = 2 - 4 + 4$$
, $6 - 6 > = <0$, $0 > \rightarrow$

$$\chi^* = \begin{pmatrix} -2 \\ 3 \end{pmatrix} \text{ is local minimiser}$$

b) Newton's method:

$$\nabla f(x_1 x_2)^T = \langle 2x_1 + 4, 2x_2 - 6 \rangle$$

 $x^{(0)} = (0,0) \quad 5 \quad \mathcal{E} = \frac{1}{2}$

$$A = \nabla^2 f(x) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \quad A^{-1} = \frac{1}{4} \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

It, O.

1.
$$\nabla f(x^{(0)})^T = \langle 4, -6 \rangle; \|\nabla f(x^{(0)})\| = \sqrt{52} \rangle \varepsilon$$

2.
$$\chi^{(1)} = \chi^{(0)} - \left[\nabla^2 f(0,0) \right]^{-1} \nabla f(0,0) =$$

$$= \begin{pmatrix} 0 \\ 0 \end{pmatrix} - \frac{1}{4} \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 4 \\ -6 \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$$

1.
$$\nabla f(x^{(1)})^{-1} = \langle \vartheta_1 0 \rangle \rightarrow \begin{pmatrix} -2 \\ 3 \end{pmatrix}$$
 is local minimiser

Q2 pert c Solve the unconstrained optimisation problem

$$\min f(x_1, x_2) = x_1^2 + x_2^2 + 4x_1 - 6x_2$$

(a) Solve $\nabla f(x_1, x_2) = \mathbf{0}$ to find stationary point(s) of $f(x_1, x_2)$.

$$\nabla f(x_1, x_2) = \begin{pmatrix} 2x_1 + 4 \\ 2x_2 - 6 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \implies \begin{pmatrix} x_1^* \\ x_2^* \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$$

is the unique stationary point of $f(x_1, x_2)$.

(b) Find the nature of the stationary point(s) in part (a).

For any point $(x_1, x_2)^T$ we have $\nabla^2 f(x_1, x_2) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = 2\mathbf{I}$. Since \mathbf{I} is positive definite, so is $2\mathbf{I}$. Hence, $f(x_1, x_2)$ is strictly convex on \mathbf{R}^2 . So, the stationary point (x_1^*, x_2^*) is its global minimizer.

Note. The fact that $\nabla^2 f(x_1, x_2)$ is positive definite could also be checked by

• directly considering

$$(x_1, x_2)\nabla^2 f(x_1, x_2) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 2(x_1^2 + x_2^2 > 0 \text{ for any } \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \neq \mathbf{0}, \text{ or }$$

• finding the eigenvalues of $\nabla^2 f(x_1, x_2)$, which is $\lambda_1 = \lambda_2 = 2 > 0$.

Question 3. Prove that if **A** is an $n \times n$ positive definite matrix, then

(a) All eigenvalues of **A** are positive.

If **x** is an eigenvector of **A**, corresponding to the eigenvalue λ , then $\mathbf{x} \neq \mathbf{0}$, and $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$. Therefore $\mathbf{x}^T \mathbf{A} \mathbf{x} = \lambda ||\mathbf{x}||^2 > 0 \implies \lambda > 0$.

(b) **A** is invertible.

If it was not, then there must be a non-zero vector \mathbf{x} such that $\mathbf{A}\mathbf{x} = \mathbf{0}$. Therefore $\mathbf{x}^T \mathbf{A} \mathbf{x} = 0$, which contradicts our assumption about \mathbf{A} being positive definite.

(c) All eigenvalues of A^{-1} are positive.

Assume that λ is an eigenvalue of \mathbf{A}^{-1} . The there is a vector $\mathbf{x} \neq \mathbf{0}$ such that

$$\begin{array}{rcl} \mathbf{A}^{-1}\mathbf{x} & = & \lambda\mathbf{x} \\ \mathbf{A}(\mathbf{A}^{-1}\mathbf{x}) & = & \mathbf{A}(\lambda\mathbf{x}) \\ \mathbf{x} & = & \lambda\mathbf{A}\mathbf{x}. & \text{Since } \mathbf{x} \neq \mathbf{0} \ \Rightarrow \lambda \neq 0, \text{ so we have} \\ \mathbf{A}\mathbf{x} & = & \frac{1}{\lambda}\mathbf{x}. \end{array}$$

So, $\frac{1}{\lambda}$ is an eigenvalue of **A**. By part (a) we have $\frac{1}{\lambda} > 0 \implies \lambda > 0$.

Question 4. (Winston Chapter 11, Section 3, Question 1, 2, 7, 8, 9)

On the given set S, determine whether each function is convex, concave, or neither.

(a)
$$f(x) = x^3$$
; $\mathbf{S} = [0, \infty)$. $f'(x) = 3x^2$ of the principal minor $f(x)$ is convex on \mathbf{S} . $f''(x) = 6x$ of $f''(x) = 6x$ is $6x \ge 0$ for any $f(x)$ is neither convex nor concave on \mathbf{S} . $f''(x) = 6x$ is $6x \ge 0$ for any $0 \ge 0$ of $0 \le 0$ for any $0 \ge 0$ of $0 \le 0$ for any $0 \ge 0$ of $0 \le 0$ for any $0 \ge 0$ of $0 \le 0$ for any $0 \ge 0$ of $0 \le 0$ for any $0 \ge 0$ of $0 \le 0$ for any $0 \ge 0$ of $0 \le 0$ for any $0 \le 0$

$$f(x) \equiv x^{\circ}$$
; $\mathbf{S} \equiv \mathbf{R}$.

 $f(x)$ is neither convex nor concave on \mathbf{S}

(c)
$$f(x_1, x_2) = x_1^2 + x_2^2$$
; $\mathbf{S} = \mathbf{R}^2$.

The Hessian of the function $f(\mathbf{x})$ at any point $\mathbf{x} \in \mathbf{R}^2$ is

$$H(\mathbf{x}) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

The eigenvalues of this matrix are $\lambda_1 = \lambda_2 = 2 > 0$. Hence, $f(x_1, x_2)$ is strictly convex on \mathbb{R}^2 .

(d)
$$f(x_1, x_2) = -x_1^2 - x_1 x_2 - 2x_2^2$$
; $\mathbf{S} = \mathbf{R}^2$.

The Hessian of the function $f(\mathbf{x})$ at any point $\mathbf{x} \in \mathbf{R}^2$ is

$$H(\mathbf{x}) = \begin{pmatrix} -2 & -1 \\ -1 & -4 \end{pmatrix}$$

The firs principal minors of this matrix are -2 < 0 and -4 < 0. The second principal is $(-2) \cdot (-4) - (-1) \cdot (-1) = 7 > 0$. Hence, by Theorem **10.** 2, $f(\mathbf{x})$ is a concave function on \mathbb{R}^2 .

(e)
$$f(x_1, x_2, x_3) = -x_1^2 - x_2^2 - 2x_3^2 + 0.5x_1x_2$$
; $\mathbf{S} = \mathbf{R}^3$.

The Hessian of the function $f(\mathbf{x})$ at any point $\mathbf{x} = (x_1, x_2, x_3) \in \mathbf{R}^3$ is

$$H(\mathbf{x}) = \begin{pmatrix} -2 & 0.5 & 0\\ 0.5 & -2 & 0\\ 0 & 0 & -4 \end{pmatrix}$$

- The first principal minors of this matrix are -2 < 0, -2 < 0, and -4 < 0.
- The second principal minors of this matrix are

$$\begin{vmatrix} -2 & 0.5 \\ 0.5 & -2 \end{vmatrix} = 3.75 > 0, \quad \begin{vmatrix} -2 & 0 \\ 0 & -4 \end{vmatrix} = 8 > 0, \quad \begin{vmatrix} -2 & 0 \\ 0 & -4 \end{vmatrix} = 8 \ge 0.$$

• The third principal minors of this matrix is

$$\begin{vmatrix} -2 & 0.5 & 0 \\ 0.5 & -2 & 0 \\ 0 & 0 & -4 \end{vmatrix} = -15 < 0.$$

4

Hence, by Theorem \mathbb{A}_2 , $f(\mathbf{x})$ is a concave function on \mathbb{R}^3 .