
1. (slightly modified from Nash and Sofer, p.434)

Consider the problem

min f(x) = x2
1 + x2

1x
2
3 + 2x1x2 + x4

2 + 8x2

s.t. 2x1 + 5x2 + x3 = 3

(a) Determine which of the following points are stationary points:

(i)

⎡

⎢

⎣

0
0
2

⎤

⎥

⎦
, (ii)

⎡

⎢

⎣

0
0
3

⎤

⎥

⎦
, and (iii)

⎡

⎢

⎣

1
0
1

⎤

⎥

⎦

(b) Determine whether each stationary point is a local minimiser.

2. Consider the problem

min x2
1 + 3x1x2 + 9x2

2 + x2
3

s.t. x1 − x2 + x3 = 4
2x1 + x2 + 5x3 = 8

(a) Write down the Lagrangian function for this problem.

(b) Use the Lagrangian to confirm that the solution (x∗

1, x
∗

2, x
∗

3) =
(2.6,−0.7, 0.7) is a stationary point for the above constrained op-
timisation problem (you will need to find optimal values for the
Lagrange multipliers µ1 and µ2).

3. Consider the problem

min f(x1, x2) = x2
1 + x1x2 + x2

2 + 4x1.
s.t. x1 + 3x2 = 1

(a) Write down the Lagrangian function for this problem.

(b) Use the Lagrangian to find all stationary points for this problem.
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4. (slightly modified from Nash and Sofer, p.437)

Consider the problem

min f(x1, x2, x3) = 3x2
1 −

1

2
x2
2 −

1

2
x2
3 + x1x2 − x1x3 + 2x2x3

s.t. 2x1 − x2 + x3 = 2.

(a) Find a stationary point for this problem using the Lagrangian.

(b) Show that this is a local minimum.



Lagrangian function – equality constraints
Theorem 3. 

➢ If (𝑥∗, Λ∗) is a stationary point to 𝐿 𝑥, Λ :

1. 𝜕𝐿 𝑥,Λ
𝜕𝜆𝑖

= 0, 𝑖 = 1. .𝑚

2. 𝜕𝐿 𝑥,Λ
𝜕𝑥𝑗

= 0, 𝑗 = 1. . 𝑛

3. Each 𝑔𝑖 𝑥 is linear And f(x) is a convex function,

then 𝑥∗ is a local minimum of f(x) on  {𝑔(𝑥) = 𝑏}
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