## 37242 Introduction to Optimisation

## **Tutorial** 9

1. (slightly modified from Nash and Sofer, p.434) Consider the problem

min 
$$f(\mathbf{x}) = x_1^2 + x_1^2 x_3^2 + 2x_1 x_2 + x_2^4 + 8x_2$$
  
s.t.  $2x_1 + 5x_2 + x_3 = 3$ 

(a) Determine which of the following points are stationary points:

(i) 
$$\begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$$
, (ii)  $\begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix}$ , and (iii)  $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ 

- (b) Determine whether each stationary point is a local minimiser.
- 2. Consider the problem

min 
$$x_1^2 + 3x_1x_2 + 9x_2^2 + x_3^2$$
  
s.t.  $x_1 - x_2 + x_3 = 4$   
 $2x_1 + x_2 + 5x_3 = 8$ 

- (a) Write down the Lagrangian function for this problem.
- (b) Use the Lagrangian to confirm that the solution  $(x_1^*, x_2^*, x_3^*) = (2.6, -0.7, 0.7)$  is a stationary point for the above constrained optimisation problem (you will need to find optimal values for the Lagrange multipliers  $\mu_1$  and  $\mu_2$ ).
- 3. Consider the problem

min 
$$f(x_1, x_2) = x_1^2 + x_1 x_2 + x_2^2 + 4x_1$$
.  
s.t.  $x_1 + 3x_2 = 1$ 

- (a) Write down the Lagrangian function for this problem.
- (b) Use the Lagrangian to find all stationary points for this problem.

 $4. \ ({\rm slightly\ modified\ from\ Nash\ and\ Sofer},\ {\rm p.437})$ 

Consider the problem

min 
$$f(x_1, x_2, x_3) = 3x_1^2 - \frac{1}{2}x_2^2 - \frac{1}{2}x_3^2 + x_1x_2 - x_1x_3 + 2x_2x_3$$
  
s.t.  $2x_1 - x_2 + x_3 = 2$ .

- (a) Find a stationary point for this problem using the Lagrangian.
- (b) Show that this is a local minimum.