37242 Introduction to Optimisation

Tutorial 9

(a) There is one constraint, so we need one element to be in the basis
— T’ll choose x1. So the B matrix is a 1 x 1 matrix (a scalar), and
in fact equals 2. So B~ = 1. Then
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Then taking the derivative of the objective function:
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Checking each of the suggested points in turn:

i. Is not feasible, therefore cannot give a stationary point.
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ii. Is feasible,

Then

Hence, point (ii) is not a stationary point.

()3

iii. Is feasible,




Then

Hence, point (iii) is a stationary point.

(b) For point (iii), we need to consider Z"V?fZ (the Hessian of the
reduced function). First we calculate the Hessian of the objective

function:
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We then need to check the eigenvalues of this matrix:
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Using the quadratic formula:

v 14+ /196 — 4 x =51
- 2

= —3orl7.

Since these values are not both positive, the matrix is not positive
definite. Hence point (iii) is not a local minimum (it’s a type of
saddle point).

The Lagrangian

L(x,p) = 2} +3was + 973 + 25
—p(ry — 29 + 23 — 4) — p2(221 + 19 + Sy — 8).
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ViL(x,p) = | 3x1 + 18x9 + f11 — o
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Adding the first two rows gives —1.7 — 3o = 0, so u ~ —0.5667.
Substituting this into row 1 gives pj ~ 4.2333. We can see by
substitution that this works for all three rows.
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so VL(x*, u*) = 0, which confirms that x* is a stationary point
for the constrained optimisation problem.

L(x,p) = 27 + 2129 + 25 + 41 — pzy + 329 — 1).
The derivative of the Lagrangian is

21’1 + Ty + 4 — M
VL(X, ,u) = T+ 25(72 — 3,u
—(x1 4+ 329 — 1)



We wish to find where this vector is 0, that is to solve
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Gaussian elimination gives:
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So, by backwards substitution, u = —ﬁ, Ty = %, T = —%.

This is the only solution, so the only stationary point is at
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ST5 — 5x3 + X% — T1X3 + 22273

4. Consider the problem

min  f(zy, 79, x3) = 327 —
s.t. 21’1 — X9 + X3 = 2.

(a) The Lagrangian is

1 1
L(Il, T2, T3, ,u) = 31’%—525%—55(7%"‘25’1{172—$1$3+2$2$3—M(2I1—$2+l’3—2).

Taking partial derivatives, we get
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Solving VL = 0 is slightly tedious, but straightforward

6 1 -1 —2| 0 ]
1 -1 2 1 0
-1 2 -1 —-1]0
-2 1 -1 0 |-2]
1 -1 2 1|0 ]
~ _61 ; _1 _? 8 Swap Ry & Rs
-2 1 -1 0 |-2]
(1 -1 2 1 0 7
0 7 —-13 =8| 0
T o1 1 010
L0 -1 3 2 | =2 ]
(1 -1 2 1 0 7
~ o n oy N | swep R &R
L0 -1 3 2 | =2 ]
1 -1 2 1170 7
0 1 1 010
T 10 0 —20 -8] 0
10 0 4 2 | =2
1 -1 2 1|0
0 1 1 010
T 10 0 1040
L0 0 0 04]-2
Hence there is a stationary point when y = —5,x3 = 2,29 =
—2,x1 = —1. Substituting this into the objective gives a value of
f=-5.
(b) If we let 21 be the basic variable, then B = [2] and N = { -1 1 }
Hence
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Now the Hessian of the original objective function is
6 1 -1

Vif=] 1 -1 2
-1 2 -1



Thus, the reduced Hessian is
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Setting this to zero gives A = 1 and A = 2 as the eigenvalues.
Hence the point we found earlier is a local minimum for the prob-
lem (and actually a global minimum since Z7V?fZ did not de-
pend on x — the reduced function is strictly convex).





