37242 Introduction to Optimisation

Tutorial 9

1. (a) There is one constraint, so we need one element to be in the basis — I'll choose x_1 . So the **B** matrix is a 1×1 matrix (a scalar), and in fact equals 2. So $\mathbf{B}^{-1} = \frac{1}{2}$. Then

$$\mathbf{Z} = \begin{bmatrix} -\mathbf{B}^{-1}\mathbf{N} \\ \mathbf{I} \end{bmatrix}$$
$$= \begin{bmatrix} -\frac{5}{2} & -\frac{1}{2} \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Then taking the derivative of the objective function:

$$\nabla f(\mathbf{x}) = \begin{bmatrix} 2x_1 + 2x_1x_3^2 + 2x_2 \\ 2x_1 + 4x_2^3 + 8 \\ 2x_1^2x_3 \end{bmatrix}.$$

Checking each of the suggested points in turn:

- i. Is not feasible, therefore cannot give a stationary point.
- ii. Is feasible,

$$\nabla f \left(\begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix} \right) = \begin{bmatrix} 0 \\ 8 \\ 0 \end{bmatrix}.$$

Then

$$\mathbf{Z}^T \nabla f \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} -\frac{5}{2} & 1 & 0 \\ -\frac{1}{2} & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 8 \\ 0 \end{bmatrix}$$
$$= \begin{bmatrix} 8 \\ 0 \end{bmatrix}$$

Hence, point (ii) is not a stationary point.

iii. Is feasible,

$$\nabla f \left(\left[\begin{array}{c} 1\\0\\1 \end{array} \right] \right) = \left[\begin{array}{c} 4\\10\\2 \end{array} \right].$$

Then

$$\mathbf{Z}^T \nabla f \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} -\frac{5}{2} & 1 & 0 \\ -\frac{1}{2} & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 10 \\ 2 \end{bmatrix}$$
$$= \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Hence, point (iii) is a stationary point.

(b) For point (iii), we need to consider $\mathbf{Z}^T \nabla^2 f \mathbf{Z}$ (the Hessian of the reduced function). First we calculate the Hessian of the objective function:

$$\nabla^2 f(\mathbf{x}) = \begin{bmatrix} 2 + 2x_3^2 & 2 & 4x_1x_3 \\ 2 & 12x_2^2 & 0 \\ 4x_1x_3 & 0 & 2x_1^2 \end{bmatrix}$$

Thus,

$$\mathbf{\nabla}^2 f \left(\begin{bmatrix} 1\\0\\1 \end{bmatrix} \right) = \begin{bmatrix} 4 & 2 & 4\\2 & 0 & 0\\4 & 0 & 2 \end{bmatrix}$$

$$\mathbf{Z}^{T} \mathbf{\nabla}^{2} f \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \end{pmatrix} \mathbf{Z} = \begin{bmatrix} -\frac{5}{2} & 1 & 0 \\ -\frac{1}{2} & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 & 2 & 4 \\ 2 & 0 & 0 \\ 4 & 0 & 2 \end{bmatrix} \begin{bmatrix} -\frac{5}{2} & -\frac{1}{2} \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} -8 & -5 & -10 \\ 2 & -1 & 0 \end{bmatrix} \begin{bmatrix} -\frac{5}{2} & -\frac{1}{2} \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 15 & -6 \\ -6 & -1 \end{bmatrix}$$

We then need to check the eigenvalues of this matrix:

$$\det \begin{bmatrix} 15 - \lambda & -6 \\ -6 & -1 - \lambda \end{bmatrix} = 0$$
so $(15 - \lambda)(-1 - \lambda) - (-6)^2 = 0$
so $\lambda^2 - 14\lambda - 51 = 0$

Using the quadratic formula:

$$\lambda = \frac{14 \pm \sqrt{196 - 4 \times -51}}{2}$$

= -3 or 17.

Since these values are not both positive, the matrix is not positive definite. Hence point (iii) is not a local minimum (it's a type of saddle point).

2. (a) The Lagrangian

$$L(\mathbf{x}, \boldsymbol{\mu}) = x_1^2 + 3x_1x_2 + 9x_2^2 + x_3^2 -\mu_1(x_1 - x_2 + x_3 - 4) - \mu_2(2x_1 + x_2 + 5x_3 - 8).$$

(b)
$$\nabla_{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\mu}) = \begin{bmatrix} 2x_1 + 3x_2 - \mu_1 - 2\mu_2 \\ 3x_1 + 18x_2 + \mu_1 - \mu_2 \\ 2x_3 - \mu_1 - 5\mu_2 \end{bmatrix}$$

$$\nabla_{\mathbf{x}} L(\mathbf{x}^*, \boldsymbol{\mu}) = \begin{bmatrix} 3.1 - \mu_1 - 2\mu_2 \\ -4.8 + \mu_1 - \mu_2 \\ 1.4 - \mu_1 - 5\mu_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Adding the first two rows gives $-1.7 - 3\mu_2 = 0$, so $\mu_2^* \approx -0.5667$. Substituting this into row 1 gives $\mu_1^* \approx 4.2333$. We can see by substitution that this works for all three rows.

$$\nabla \mu L(\mathbf{x}^*, \mu) = \begin{bmatrix} -(x_1^* - x_2^* + x_3^* - 4) \\ -(2x_1^* + x_2^* + 5x_3^* - 8) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix},$$

so $\nabla L(\mathbf{x}^*, \boldsymbol{\mu}^*) = \mathbf{0}$, which confirms that \mathbf{x}^* is a stationary point for the constrained optimisation problem.

- 3. (a) $L(\mathbf{x}, \mu) = x_1^2 + x_1 x_2 + x_2^2 + 4x_1 \mu(x_1 + 3x_2 1).$
 - (b) The derivative of the Lagrangian is

$$\nabla L(\mathbf{x}, \mu) = \begin{bmatrix} 2x_1 + x_2 + 4 - \mu \\ x_1 + 2x_2 - 3\mu \\ -(x_1 + 3x_2 - 1) \end{bmatrix}.$$

We wish to find where this vector is $\mathbf{0}$, that is to solve

$$\begin{bmatrix} 2 & 1 & -1 \\ 1 & 2 & -3 \\ 1 & 3 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \mu \end{bmatrix} = \begin{bmatrix} -4 \\ 0 \\ 1 \end{bmatrix}$$

Gaussian elimination gives:

$$\begin{bmatrix} 2 & 1 & -1 & | & -4 \\ 1 & 2 & -3 & | & 0 \\ 1 & 3 & 0 & | & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 2 & 1 & -1 & | & -4 \\ 0 & \frac{3}{2} & -\frac{5}{2} & | & 2 \\ 0 & \frac{5}{2} & \frac{1}{2} & | & 3 \end{bmatrix} \quad R_2 \leftarrow R_2 - \frac{1}{2}R_1$$

$$\sim \begin{bmatrix} 2 & 1 & -1 & | & -4 \\ 0 & 1 & -\frac{5}{3} & | & \frac{4}{3} \\ 0 & 0 & \frac{14}{3} & | & -\frac{1}{3} \end{bmatrix} \quad R_2 \leftarrow \frac{2}{3}R_2$$

$$R_3 \leftarrow R_3 - \frac{5}{2} \text{ new } R_2$$

So, by backwards substitution, $\mu = -\frac{1}{14}$, $x_2 = \frac{17}{14}$, $x_1 = -\frac{37}{14}$. This is the only solution, so the only stationary point is at

$$\mathbf{x} = \left[\begin{array}{c} -\frac{37}{14} \\ \frac{17}{14} \end{array} \right]$$

4. Consider the problem

min
$$f(x_1, x_2, x_3) = 3x_1^2 - \frac{1}{2}x_2^2 - \frac{1}{2}x_3^2 + x_1x_2 - x_1x_3 + 2x_2x_3$$

s.t. $2x_1 - x_2 + x_3 = 2$.

(a) The Lagrangian is

$$L(x_1, x_2, x_3, \mu) = 3x_1^2 - \frac{1}{2}x_2^2 - \frac{1}{2}x_3^2 + x_1x_2 - x_1x_3 + 2x_2x_3 - \mu(2x_1 - x_2 + x_3 - 2).$$

Taking partial derivatives, we get

$$\nabla L = \begin{bmatrix} 6x_1 + x_2 - x_3 - 2\mu \\ x_1 - x_2 + 2x_3 + \mu \\ -x_1 + 2x_2 - x_3 - \mu \\ -(2x_1 - x_2 + x_3 - 2) \end{bmatrix}$$

Solving $\nabla L = \mathbf{0}$ is slightly tedious, but straightforward

$$\begin{bmatrix} 6 & 1 & -1 & -2 & 0 \\ 1 & -1 & 2 & 1 & 0 \\ -1 & 2 & -1 & -1 & 0 \\ -2 & 1 & -1 & 0 & -2 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & -1 & 2 & 1 & 0 \\ 6 & 1 & -1 & -2 & 0 \\ -1 & 2 & -1 & -1 & 0 \\ -2 & 1 & -1 & 0 & -2 \end{bmatrix} \quad \text{Swap } R_1 \& R_2$$

$$\sim \begin{bmatrix} 1 & -1 & 2 & 1 & 0 \\ 0 & 7 & -13 & -8 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & -1 & 3 & 2 & -2 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & -1 & 2 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 7 & -13 & -8 & 0 \\ 0 & -1 & 3 & 2 & -2 \end{bmatrix} \quad \text{Swap } R_2 \& R_3$$

$$\sim \begin{bmatrix} 1 & -1 & 2 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & -20 & -8 & 0 \\ 0 & 0 & 4 & 2 & -2 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & -1 & 2 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 4 & 2 & -2 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & -1 & 2 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0.4 & -2 \end{bmatrix}$$

Hence there is a stationary point when $\mu = -5, x_3 = 2, x_2 = -2, x_1 = -1$. Substituting this into the objective gives a value of f = -5.

(b) If we let x_1 be the basic variable, then B = [2] and $N = \begin{bmatrix} -1 & 1 \end{bmatrix}$. Hence

$$Z = \begin{bmatrix} -B^{-1}N \\ I \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Now the Hessian of the original objective function is

$$\nabla^2 f = \begin{bmatrix} 6 & 1 & -1 \\ 1 & -1 & 2 \\ -1 & 2 & -1 \end{bmatrix}$$

Thus, the reduced Hessian is

$$Z^{T} \nabla^{2} f Z = \begin{bmatrix} \frac{1}{2} & 1 & 0 \\ -\frac{1}{2} & 0 & 1 \end{bmatrix} \begin{bmatrix} 6 & 1 & -1 \\ 1 & -1 & 2 \\ -1 & 2 & -1 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} \frac{1}{2} & 1 & 0 \\ -\frac{1}{2} & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 & -4 \\ -\frac{1}{2} & \frac{3}{2} \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix}$$
$$= \begin{bmatrix} \frac{3}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{3}{2} \end{bmatrix}.$$

Checking the characteristic equation of this matrix:

$$\det \begin{bmatrix} \frac{3}{2} - \lambda & -\frac{1}{2} \\ -\frac{1}{2} & \frac{3}{2} - \lambda \end{bmatrix} = \left(\frac{3}{2} - \lambda\right)^2 - \frac{1}{4}$$
$$= \lambda^2 - 3\lambda + 2$$

Setting this to zero gives $\lambda=1$ and $\lambda=2$ as the eigenvalues. Hence the point we found earlier is a local minimum for the problem (and actually a global minimum since $Z^T \nabla^2 f Z$ did not depend on \mathbf{x} — the reduced function is strictly convex).