
1. (a) There is one constraint, so we need one element to be in the basis
— I’ll choose x1. So the B matrix is a 1×1 matrix (a scalar), and
in fact equals 2. So B−1 = 1

2
. Then

Z =

[

−B−1N

I

]

=







−5

2
−1

2

1 0
0 1







Then taking the derivative of the objective function:

∇f(x) =







2x1 + 2x1x
2

3
+ 2x2

2x1 + 4x3

2
+ 8

2x2

1
x3





 .

Checking each of the suggested points in turn:

i. Is not feasible, therefore cannot give a stationary point.

ii. Is feasible,

∇f













0
0
3











 =







0
8
0





 .

Then

ZT
∇f













0
0
3











 =

[

−5

2
1 0

−1

2
0 1

]







0
8
0







=

[

8
0

]

Hence, point (ii) is not a stationary point.

iii. Is feasible,

∇f













1
0
1











 =







4
10
2





 .
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Then

ZT
∇f













1
0
1











 =

[

−5

2
1 0

−1

2
0 1

]







4
10
2







=

[

0
0

]

Hence, point (iii) is a stationary point.

(b) For point (iii), we need to consider ZT
∇

2fZ (the Hessian of the
reduced function). First we calculate the Hessian of the objective
function:

∇
2f(x) =







2 + 2x2

3
2 4x1x3

2 12x2

2
0

4x1x3 0 2x2

1







Thus,

∇
2f













1
0
1











 =







4 2 4
2 0 0
4 0 2







ZT
∇

2f













1
0
1











Z =

[

−5

2
1 0

−1

2
0 1

]







4 2 4
2 0 0
4 0 2













−5

2
−1

2

1 0
0 1







=

[

−8 −5 −10
2 −1 0

]







−5

2
−1

2

1 0
0 1







=

[

15 −6
−6 −1

]

We then need to check the eigenvalues of this matrix:

det

[

15− λ −6
−6 −1− λ

]

= 0

so (15− λ)(−1− λ)− (−6)2 = 0

so λ2 − 14λ− 51 = 0



Using the quadratic formula:

λ =
14±

√
196− 4×−51

2
= −3 or 17.

Since these values are not both positive, the matrix is not positive
definite. Hence point (iii) is not a local minimum (it’s a type of
saddle point).

2. (a) The Lagrangian

L(x,µ) = x2

1
+ 3x1x2 + 9x2

2
+ x2

3

−µ1(x1 − x2 + x3 − 4)− µ2(2x1 + x2 + 5x3 − 8).

(b)

∇
x
L(x,µ) =







2x1 + 3x2 − µ1 − 2µ2

3x1 + 18x2 + µ1 − µ2

2x3 − µ1 − 5µ2







∇
x
L(x∗,µ) =







3.1− µ1 − 2µ2

−4.8 + µ1 − µ2

1.4− µ1 − 5µ2





 =







0
0
0







Adding the first two rows gives −1.7− 3µ2 = 0, so µ∗

2
≈ −0.5667.

Substituting this into row 1 gives µ∗

1
≈ 4.2333. We can see by

substitution that this works for all three rows.

∇µL(x∗,µ) =

[

−(x∗

1
− x∗

2
+ x∗

3
− 4)

−(2x∗

1
+ x∗

2
+ 5x∗

3
− 8)

]

=

[

0
0

]

,

so ∇L(x∗,µ∗) = 0, which confirms that x∗ is a stationary point
for the constrained optimisation problem.

3. (a)
L(x, µ) = x2

1
+ x1x2 + x2

2
+ 4x1 − µ(x1 + 3x2 − 1).

(b) The derivative of the Lagrangian is

∇L(x, µ) =







2x1 + x2 + 4− µ

x1 + 2x2 − 3µ
−(x1 + 3x2 − 1)





 .



We wish to find where this vector is 0, that is to solve







2 1 −1
1 2 −3
1 3 0













x1

x2

µ





 =







−4
0
1







Gaussian elimination gives:







2 1 −1 −4
1 2 −3 0
1 3 0 1







∼







2 1 −1 −4
0 3

2
−5

2
2

0 5

2

1

2
3





 R2 ← R2 − 1

2
R1

R3 ← R3 − 1

2
R1

∼







2 1 −1 −4
0 1 −5

3

4

3

0 0 14

3
−1

3





 R2 ← 2

3
R2

R3 ← R3 − 5

2
new R2

So, by backwards substitution, µ = − 1

14
, x2 =

17

14
, x1 = −37

14
.

This is the only solution, so the only stationary point is at

x =

[

−37

14
17

14

]

4. Consider the problem

min f(x1, x2, x3) = 3x2

1
− 1

2
x2

2
− 1

2
x2

3
+ x1x2 − x1x3 + 2x2x3

s.t. 2x1 − x2 + x3 = 2.

(a) The Lagrangian is

L(x1, x2, x3, µ) = 3x2

1
−
1

2
x2

2
−
1

2
x2

3
+x1x2−x1x3+2x2x3−µ(2x1−x2+x3−2).

Taking partial derivatives, we get

∇L =











6x1 + x2 − x3 − 2µ
x1 − x2 + 2x3 + µ

−x1 + 2x2 − x3 − µ

−(2x1 − x2 + x3 − 2)













Solving ∇L = 0 is slightly tedious, but straightforward










6 1 −1 −2 0
1 −1 2 1 0
−1 2 −1 −1 0
−2 1 −1 0 −2











∼











1 −1 2 1 0
6 1 −1 −2 0
−1 2 −1 −1 0
−2 1 −1 0 −2











Swap R1 & R2

∼











1 −1 2 1 0
0 7 −13 −8 0
0 1 1 0 0
0 −1 3 2 −2











∼











1 −1 2 1 0
0 1 1 0 0
0 7 −13 −8 0
0 −1 3 2 −2











Swap R2 & R3

∼











1 −1 2 1 0
0 1 1 0 0
0 0 −20 −8 0
0 0 4 2 −2











∼











1 −1 2 1 0
0 1 1 0 0
0 0 1 0.4 0
0 0 0 0.4 −2











Hence there is a stationary point when µ = −5, x3 = 2, x2 =
−2, x1 = −1. Substituting this into the objective gives a value of
f = −5.

(b) If we let x1 be the basic variable, then B = [2] and N =
[

−1 1
]

.
Hence

Z =

[

−B−1N

I

]

=







1

2
−1

2

1 0
0 1





 .

Now the Hessian of the original objective function is

∇
2f =







6 1 −1
1 −1 2
−1 2 −1









Thus, the reduced Hessian is

ZT
∇

2fZ =

[

1

2
1 0

−1

2
0 1

]







6 1 −1
1 −1 2
−1 2 −1













1

2
−1

2

1 0
0 1







=

[

1

2
1 0

−1

2
0 1

]







4 −4
−1

2

3

2
3

2
−1

2







=

[

3

2
−1

2

−1

2

3

2

]

.

Checking the characteristic equation of this matrix:

det

[

3

2
− λ −1

2

−1

2

3

2
− λ

]

=
(

3

2
− λ

)2

−
1

4

= λ2 − 3λ+ 2

Setting this to zero gives λ = 1 and λ = 2 as the eigenvalues.
Hence the point we found earlier is a local minimum for the prob-
lem (and actually a global minimum since ZT

∇
2fZ did not de-

pend on x — the reduced function is strictly convex).




