37363 - Introduction to Optimization


Maximum

\( c = \max_{u \in U} [f(u)] \iff \forall u \in U [ f(u) \leq c ]\)

Argument maximum

\( c = \text{arg max}_{u \in U} [f(u)] \iff \forall u \in U [ f(u) \leq f(c) ]\)

Moment generating function

Generating function related to an RV (assuming it exists)

\(M_X (r) = \text{E}(e^{rX}) \)

Characteristic function

Generating function that exists for all RVs

\(\varphi_X (r) = \text{E}(e^{irX}) \)

\( \text{E}(X^{k}) = \frac{1}{i^k} \varphi_{X}^{(k)}(0) \)

Moment generating function

\( M_{\textbf{x}} ( \textbf{u}) = \text{E}( e^{\textbf{u} \cdot \textbf{x}} ) \)

Characteristic function

\( \varphi_{\textbf{x}} ( \textbf{u}) = \text{E}( e^{i\textbf{u} \cdot \textbf{x}} ) \)

Multivariable

Random matrix (Matrix RV)

On a probability space \( (\Omega, \mathcal{F}, \text{Pr}) \),

\( \textbf{X} = \begin{bmatrix} X_{1,1} & X_{1,2} & \cdots & X_{1,n} \\ X_{2,1} & X_{2,2} & \cdots & X_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ X_{m,1} & X_{m,2} & \cdots & X_{m,n} \end{bmatrix}\)

Expectation

Variance

Moment generating function

Characteristic function

Conditional expectation is best mean squared estimator

\(\text{E}(X^2) \lt \infty \implies \min_{g} ( \text{E} ( [ X - g(Y) ]^2)) = \text{E}(X|Y) ) \)

Gaussian Random Vector (Gaussian Vector RV)

\( \textbf{x} \text{ is a Gaussian Vector RV } \iff \textbf{x} = \textbf{m} + \textbf{L}\boldsymbol{\xi}\)

\( \textbf{x} \text{ is a Gaussian Vector RV } \iff M_\textbf{x} (\textbf{u}) = \text{E} ( e^{\textbf{m} \cdot \textbf{u} + \frac{1}{2}\textbf{u} \cdot \textbf{Q}\textbf{u} } )\)

\( \textbf{x} \text{ is a Gaussian Vector RV } \iff \varphi_\textbf{x} (\textbf{u}) = \text{E} ( e^{ i\textbf{m} \cdot \textbf{u} - \frac{1}{2}\textbf{u} \cdot \textbf{Q}\textbf{u} } )\)

Properties

Theorem on normal correlation

\(\textbf{x},\textbf{y} \text{ are Gaussian vector RVs} \land \text{cov}(\textbf{x},\textbf{y}) \text{ is positive definite} \implies\)

Convergence in probabilty

\( \text{plim}_{n \to \infty} X_n = X \iff \forall \varepsilon \in \mathbb{R}_{+} \setminus \{0\}[ \lim_{n \to \infty} \text{Pr}( |X_n -X| \geq \varepsilon ) = 0 ] \)

\( \text{plim}_{n \to \infty} X_n = X \iff \forall \varepsilon \in \mathbb{R}_{+} \setminus \{0\} [ \lim_{n \to \infty} \text{Pr}( |X_n -X| \lt \varepsilon ) = 1 ] \)

Almost sure convergence

\( \lim_{n \to \infty} X_n = X \text{ almost surely }\iff \text{Pr}( \lim_{n \to \infty} X_n = X ) = 1 \)

Convergence in mean square

\( \lim_{n \to \infty} X_n = X \text{ in mean square } \iff \lim_{n \to \infty} \text{E}(|X_n - x|^2) = 0 \)

Crude Monte-Carlo estimator (Crude MC estimator)

\(F_n = \frac{1}{n}\sum^{n}_{i=1} f(U_i)\)

Control variate

Introduction of another estimator to minimize variance of crude Monte-Carlo estimator

\( \text{plim}_{n \to \infty }Q_n = \text{E}[q(X)] =Q \)

MC variance reduction

\( G_n = F_n + a(Q_n - Q) \)

Optimizing \(a\)

By considering \(\frac{d}{da}[\text{Var}(H_n)]=0\)

\( \argmin_{a \in \mathbb{R} } [ \text{Var}(F_n +a(Q_n -Q) ] = \frac{\text{cov}(f(U),q(U))}{\text{Var}(q(U))}\)